Engineering applications of carbon nanofibers and nanotubes require their alignment in specific directions. Single-walled carbon nanotubes can be aligned in a magnetic field due to the presence of small amounts of catalyst elements, such as Ni and Co. However, for carbon nanofibers, their extremely low magnetic susceptibility is not sufficient for magnetically induced alignment. We present a method of solution-coating of NiO and CoO onto the surface of the carbon nanofibers. Due to the NiO- and CoO-coating, these nanofibers can be well aligned in the polymer composites under moderate magnetic field (3 T). Both transmission electron microscopy and scanning electron microscopy results show the well-aligned nanofibers in a polymer matrix. Mechanical testing shows a pronounced anisotropy in tensile strength in directions normal (12.1 MPa) and parallel (22 MPa) to the applied field, resulting from the well-aligned nanofibers in the polymer matrix. The mechanism of magnetic alignment due to coating of NiO and CoO on the nanofiber surface is discussed.

1.
S.
Iijima
,
Nature (London)
354
,
56
(
1991
).
2.
R. H.
Baughman
,
C.
Cui
,
A. A.
Zakhidov
,
Z.
Iqbal
,
J. N.
Barisci
,
G. M.
Spinks
,
G. G.
Wallace
,
A.
Mazzoldi
,
D.
De Rossi
,
A.
G. Rinzler
,
O.
Jaschinski
,
S.
Roth
, and
M.
Kertesz
,
Science
284
,
1340
(
1999
).
3.
M.
Gao
,
L.
Dai
,
R. H.
Baughman
,
G. M.
Spinks
, and
G. G.
Wallace
,
Proc. SPIE
3987
,
18
(
2000
).
4.
V. G.
Hadjiev
,
M. N.
Iliev
,
S.
Arepalli
,
P.
Nikolaev
, and
B. S.
Files
,
Appl. Phys. Lett.
78
,
3193
(
2001
).
5.
C.
Liu
,
H. M.
Cheng
,
H. T.
Cong
,
F.
Li
,
G.
Su
,
B. L.
Zhou
, and
M. S.
Dresselhaus
,
Adv. Mater. (Weinheim, Ger.)
12
,
1190
(
2000
).
6.
D. A.
Walters
,
M. J.
Casavant
,
X. C.
Qin
,
C. B.
Huffman
,
P. J.
Boul
,
L. M.
Ericson
,
E. H.
Haroz
,
M. J.
O’Connell
,
K.
Smith
,
D. T.
Colbert
, and
R. E.
Smalley
,
Chem. Phys. Lett.
338
,
14
(
2001
).
7.
J.
Zhu
,
J. D.
Kim
,
H. Q.
Peng
,
J. L.
Margrave
,
V. N.
Khabashesku
, and
E. V.
Barrera
,
Nano Lett.
3
,
1107
(
2003
)
8.
E. T.
Tostenson
and
T. W.
Chou
,
J. Phys. D
35
,
L
77
(
2002
).
9.
M.
Cadek
,
J. N.
Coleman
,
V.
Barron
,
K.
Hedicke
, and
W. J.
Blau
,
Appl. Phys. Lett.
81
,
5123
(
2002
).
10.
S. J. V.
Frankland
,
V. M.
Harik
,
G. M.
Odegard
,
D. W.
Brenner
, and
T. S.
Gates
,
Compos. Sci. Technol.
63
,
1655
(
2003
).
11.
H.
Garmestani
,
M. S.
Al-Haik
,
K.
Dahmen
,
R.
Tannenbaum
,
D.
Li
,
S. S.
Sablin
, and
M. Y.
Hussaini
,
Adv. Mater. (Weinheim, Ger.)
15
,
1918
(
2003
).
12.
E. S.
Choi
,
J. S.
Brooks
,
D. L.
Eaton
,
M. S.
Al-Haik
,
M. Y.
Hussaini
,
H.
Garmestani
,
D.
Li
, and
K.
Dahmen
,
J. Appl. Phys.
94
,
6034
(
2003
).
13.
T.
Kimura
,
H.
Ago
,
M.
Tobita
,
S.
Ohshima
,
M.
Kyotani
, and
M.
Yomura
,
Adv. Mater. (Weinheim, Ger.)
14
,
1380
(
2002
).
14.
J. E.
Fischer
,
W.
Zhou
,
J.
Vavro
,
M. C.
Llaguno
,
C.
Guthy
,
R.
Haggenmueller
,
M. J.
Casavant
,
D. E.
Walters
, and
R. E.
Smalley
,
J. Appl. Phys.
93
,
2157
(
2003
).
15.
F.
Tsui
,
L.
Jin
, and
O.
Zhou
,
Appl. Phys. Lett.
76
,
1452
(
2000
).
16.
W. J.
van Ooij
,
S.
Eufinger
, and
T. H.
Ridgway
,
Plasmas Polym.
1
,
231
(
1996
).
17.
D.
Shi
,
J.
Lian
,
P.
He
,
L. M.
Wang
,
W. J.
Van Ooij
,
M.
Schulz
,
Y. J.
Liu
, and
D. B.
Mast
,
Appl. Phys. Lett.
81
,
5216
(
2002
).
18.
D.
Shi
,
J.
Lian
,
P.
He
,
L. M.
Wang
,
M.
Schultz
,
F.
Xiao
,
L.
Yang
, and
D.
Mast
,
Appl. Phys. Lett.
83
,
5301
(
2003
).
19.
D.
Shi
,
S. X.
Wang
,
W. J. v.
Ooij
,
L. M.
Wang
,
J. G.
Zhao
, and
Z.
Yu
,
Appl. Phys. Lett.
78
,
1243
(
2001
).
20.
D.
Shi
,
S. X.
Wang
,
W. J.
van Ooij
,
L. M.
Wang
,
J. G.
Zhao
, and
Z.
Yu
,
J. Mater. Res.
17
,
981
(
2002
).
21.
D.
Shi
,
P.
He
,
J.
Lian
,
L. M.
Wang
, and
W. J.
van Ooij
,
J. Mater. Res.
17
,
2555
(
2002
).
22.

Applied Sciences Inc., www.apsci.com

23.
D.
Halliday
and
R.
Resnick
,
Fundamentals of Physics
, 2nd ed. (
Wiley
, New York,
1981
), p.
539
.
You do not currently have access to this content.