Fully strained single-crystal metastable Ge1xSnx layers were grown on Ge(001) in order to probe the role of Sn dopant and alloy concentrations (CSn=1×1018cm3to6.1at.%) on surface roughening pathways leading to epitaxial breakdown during low-temperature (155°C) molecular-beam epitaxy of compressively strained films. The addition of Sn was found to mediate Ge(001) surface morphological evolution through two competing pathways. At very low Sn concentrations (x0.02), the dominant effect is a Sn-induced enhancement in both the Ge surface diffusivity and the probability of interlayer mass transport. This, in turn, results in more efficient filling of interisland trenches, and thus delays epitaxial breakdown. In fact, breakdown is not observed at all for Sn concentrations in the doping regime, 1×1018CSn<4.4×1020cm3(2.3×105x<0.010)! At higher concentrations, there is a change in Ge1xSnx(001) growth kinetics due to a rapid increase in the amount of compressive strain. This leads to a gradual reduction in the film thickness h1(x) corresponding to the onset of breakdown as strain-induced roughening overcomes the surface smoothening effects, and results in an increase in the overall roughening rate. We show that by varying the Sn concentration through the dopant to dilute alloy concentration range during low-temperature Ge(001) growth, we can controllably manipulate the surface roughening pathway, and hence the epitaxial thickness, over a very wide range.

1.
M.
Copel
,
M. C.
Reuter
,
E.
Kaxiras
, and
R. M.
Tromp
,
Phys. Rev. Lett.
63
,
632
(
1989
).
2.
F. K.
LeGoues
,
M.
Copel
, and
R. M.
Tromp
,
Phys. Rev. Lett.
63
,
1826
(
1989
).
3.
M.
Copel
,
M. C.
Reuter
,
M.
Horn von Hoegen
, and
R. M.
Tromp
,
Phys. Rev. B
42
,
011
682
(
1990
).
4.
D. J.
Eaglesham
,
F. C.
Unterwald
, and
D. C.
Jacobson
,
Phys. Rev. Lett.
70
,
966
(
1993
).
5.
H.
Nakahara
and
M.
Ichikawa
,
Appl. Phys. Lett.
61
,
1531
(
1992
).
6.
M.
Horn-von Hoegen
,
J.
Falta
,
M.
Copel
, and
R. M.
Tromp
,
Appl. Phys. Lett.
66
,
487
(
1995
).
7.
B.
Gallas
,
I.
Berbezier
,
J.
Chevrier
, and
J.
Derrien
,
Phys. Rev. B
54
,
4919
(
1996
).
8.
B.
Gallas
,
I.
Berbezier
, and
J.
Derrien
,
Thin Solid Films
294
,
69
(
1997
).
9.
B.
Gallas
,
I.
Berbezier
,
J.
Derrien
,
D.
Gandolfo
,
J.
Ruiz
, and
V. A.
Zagrebnov
,
J. Vac. Sci. Technol. B
16
,
1564
(
1998
).
10.
D. W.
Jenkins
and
J. D.
Dow
,
Phys. Rev. B
36
,
7994
(
1987
).
11.
K. A.
Mäder
,
A.
Baldereschi
, and
H.
von Känel
,
Solid State Commun.
89
,
1123
(
1989
).
12.
G.
He
and
H. A.
Atwater
,
Phys. Rev. Lett.
79
,
1937
(
1997
).
13.
R.
Ragan
and
H. A.
Atwater
,
Appl. Phys. Lett.
77
,
3418
(
2000
).
14.
K. A.
Bratland
,
Y. L.
Foo
,
P.
Desjardins
, and
J. E.
Greene
,
Appl. Phys. Lett.
82
,
4247
(
2003
).
15.
O.
Gürdal
,
P.
Desjardins
,
J. R. A.
Carlsson
,
N.
Taylor
,
H. H.
Radamson
,
J.-E.
Sundgren
, and
J. E.
Greene
,
J. Appl. Phys.
83
,
162
(
1998
).
16.
P.
Desjardins
,
T.
Spila
,
O.
Gürdal
,
N.
Taylor
, and
J. E.
Greene
,
Phys. Rev. B
60
,
15993
(
1999
).
17.
P. R.
Pukite
,
A.
Harwit
, and
S. S.
Iyer
,
Appl. Phys. Lett.
54
,
2142
(
1989
).
18.
W.
Wegscheider
,
J.
Olajos
,
U.
Menczigar
,
W.
Dondl
, and
G.
Abstreiter
,
J. Cryst. Growth
123
,
75
(
1992
).
19.
J.
Villain
,
J. Phys. I
1
,
19
(
1991
).
20.
J.
Lapujoulade
,
Surf. Sci. Rep.
20
,
191
(
1994
).
21.
M. D.
Johnson
,
C.
Orme
,
A. W.
Hunt
,
D.
Graff
,
J.
Sudijono
,
L. M.
Sander
, and
B. G.
Orr
,
Phys. Rev. Lett.
72
,
116
(
1994
).
22.
J. E.
Van Nostrand
,
S. J.
Chey
,
M.-A.
Hasan
,
D. G.
Cahill
, and
J. E.
Greene
,
Phys. Rev. Lett.
74
,
1127
(
1995
).
23.
J. A.
Stroscio
,
D. T.
Pierce
,
M. D.
Stiles
,
A.
Zangwill
, and
L. M.
Sander
,
Phys. Rev. Lett.
75
,
1127
(
1995
).
24.
N.-E.
Lee
,
D.
Cahill
, and
J. E.
Greene
,
Phys. Rev. B
53
,
7876
(
1996
).
25.
J. E.
Van Nostrand
,
S. J.
Chey
, and
D. G.
Cahill
,
Phys. Rev. B
57
,
12536
(
1998
).
26.
B. W.
Karr
,
I.
Petrov
,
P.
Desjardins
,
D. G.
Cahill
, and
J. E.
Greene
,
Surf. Coat. Technol.
94–95
,
12
536
(
1998
).
27.
C.
Schelling
,
G.
Springholz
, and
F.
Schaffler
,
Thin Solid Films
369
,
1
(
2000
).
28.
K. A.
Bratland
,
Y. L.
Foo
,
J. A. N. T.
Soares
,
T.
Spila
,
P.
Desjardins
, and
J. E.
Greene
,
Phys. Rev. B
67
,
125322
(
2003
).
29.
G.
Ehrlich
and
F. G.
Hudda
,
J. Chem. Phys.
44
,
1039
(
1966
);
S. C.
Wang
and
G.
Ehrlich
,
Phys. Rev. Lett.
70
,
41
(
1993
);
[PubMed]
S. C.
Wang
and
G.
Ehrlich
,
Phys. Rev. Lett.
71
,
4177
(
1993
);
G.
Ehrlich
,
Surf. Sci.
331∕333
,
865
(
1995
);
A.
Gölzhäuser
and
G.
Ehrlich
,
Phys. Rev. Lett.
77
,
1334
(
1996
).
[PubMed]
30.
N.-E.
Lee
,
G. A.
Tomasch
, and
J. E.
Greene
,
Appl. Phys. Lett.
65
,
3236
(
1994
).
31.
N.-E.
Lee
,
G.
Xue
, and
J. E.
Greene
,
J. Appl. Phys.
80
,
769
(
1996
).
32.
G.
Xue
,
H. Z.
Xiao
,
M.-A.
Hasan
,
J. E.
Greene
, and
H. K.
Birnbaum
,
J. Appl. Phys.
74
,
2512
(
1993
).
33.
X.-J.
Zhang
,
G.
Xue
,
A.
Agarwal
,
R.
Tsu
,
M.-A.
Hasan
,
J. E.
Greene
, and
A.
Rockett
,
J. Vac. Sci. Technol. A
11
,
2553
(
1993
).
34.
J. R.
Doolittle
,
Nucl. Instrum. Methods Phys. Res. B
15
,
227
(
1986
).
35.
D. A.
Shirley
,
Phys. Rev. B
5
,
4709
(
1972
).
36.

CasaXPS, Advanced Processing Software for XPS Spectra; Casa Software Ltd., Wilmslow, UK SK9 6SN.

37.
M. A. G.
Halliwell
,
M. H.
Lyons
,
S. T.
Davey
,
M.
Hockley
,
C. G.
Tuppen
, and
C. J.
Gibbings
,
Semicond. Sci. Technol.
4
,
10
(
1989
).
38.
S.
Tagaki
,
Acta Crystallogr.
15
,
1311
(
1962
).
39.
D.
Taupin
,
Bull. Soc. Fr. Mineral. Cristallogr.
87
,
469
(
1964
).
40.
P.
Fewster
,
Semicond. Sci. Technol.
8
,
1915
(
1993
).
41.
H.
Heinke
,
M. O.
Moller
,
D.
Hommel
, and
G.
Landwehr
,
J. Cryst. Growth
135
,
41
(
1994
).
42.
Handbook of X-ray Photoelectron Spectroscopy
, edited by
J.
Chastain
and
R. C.
King
, Jr.
(
Perkin-Elmer Corporation
, Physical Electronics Division, Eden Prairie, MN,
1992
).
43.
Inelastic mean free path values for MgKα excitation are 24.8 and 17.8Å for Ge3d and Sn3d52, respectively;
NIST Electron Inelastic-Mean-Free-Path Database
Version 1.1;
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
(unpublished data).
44.
M. G.
Lagally
, in
Methods of Experimental Physics
, edited by
R. L.
Park
and
M. G.
Lagally
(
Academic
, New York,
1985
), Vol.
22
.
45.
M.
Henzler
, in
Electron Spectroscopy for Surface Analysis
, edited by
H.
Ibach
, in
Topics in Current Physics
, Vol.
4
(
Springer
, Berlin,
1977
).
46.
C.
Argile
and
G. E.
Rhead
,
Surf. Sci. Rep.
10
,
227
(
1989
).
47.
V. A.
Shchukin
,
N. N.
Ledentsov
,
P. S.
Kop’eV
, and
D.
Bimberg
,
Phys. Rev. Lett.
75
,
2968
(
1995
).
48.
S. C.
Wang
and
G.
Ehrlich
,
Phys. Rev. Lett.
67
,
2509
(
1991
).
49.
Z.
Zhang
and
M. G.
Lagally
,
Phys. Rev. Lett.
72
,
693
(
1994
).
50.
N.-E.
Lee
,
D. G.
Cahill
, and
J. E.
Greene
,
J. Appl. Phys.
80
,
2199
(
1996
).
51.
T.
Spila
,
P.
Desjardins
,
A.
Vailionis
,
H.
Kim
,
N.
Taylor
,
D. G.
Cahill
,
J. E.
Greene
,
S.
Guillon
, and
R. A.
Masut
,
J. Appl. Phys.
91
,
3579
(
2002
).
52.
D. E.
Jesson
,
K. M.
Chen
, and
S. J.
Pennycook
,
MRS Bull.
21
,
31
(
1996
).
53.
K. M.
Chen
,
D. E.
Jesson
,
S. J.
Pennycook
,
T.
Thundat
, and
R. J.
Warmack
,
Phys. Rev. B
56
,
R1700
(
1997
).
54.
J.
Tersoff
and
F. K.
LeGoues
,
Phys. Rev. Lett.
72
,
3570
(
1994
).
You do not currently have access to this content.