ZnO nanoblades and nanoflowers are synthesized using zinc acetate dihydrate Zn(CH3COO)22H2O dissolved in distilled water by ultrasonic pyrolysis at 380500°C. Thermogravimetry-differential scanning calorimetry, x-ray diffraction, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, and low-temperature photoluminescence (PL) were used to characterize the thermal properties, crystalline and optical features of the ZnO nanostructures. The results showed that at 400°C the formation of nanoblades resulted from the simultaneous precipitation and nucleation in zinc acetate precursor. At an elevated temperature of 450°C, decomposition was almost advanced and thus the size of nanopetal became smaller and aggregates became larger by as much as 60nm. The formation of aggregates is explained in terms of random nucleation model. Through PL measurement, nanoblade showed a strong near band-edge emission with negligible deep-level emission and free exciton band-gap energy Eg(0)=3.372eV and Debye temperature β=477±65K by the fitting curve of free exciton peak as a function of temperature to Varshni equation, Eg(T)=Eg(0)αT2(β+T), which are very close to bulk ZnO.

1.
D. M.
Bagnell
,
Y. R.
Chen
,
Z.
Zhu
,
Y.
Yao
,
S.
Koyama
,
M. Y.
Shen
, and
T.
Goto
,
Appl. Phys. Lett.
70
,
2230
(
1997
).
2.
A.
Ohtomo
 et al.,
Mater. Sci. Forum
265
,
1463
(
1998
).
3.
R. D.
Vispute
 et al.,
Appl. Phys. Lett.
73
,
348
(
1998
).
4.
K. K.
Kim
,
J. H.
Song
,
H. J.
Jung
,
W. K.
Choi
,
S.-J.
Park
, and
J.-H.
Song
,
J. Appl. Phys.
87
,
3573
(
2000
).
5.
Y.
Zhang
,
N.
Wang
, and
S.
Gao
,
Chem. Mater.
14
,
3564
(
2002
).
6.
S. C.
Lyu
,
Y.
Zhang
,
C. J.
Lee
,
H.
Ruh
, and
H. J.
Lee
,
Chem. Mater.
15
,
3294
(
2003
).
7.
Y. B.
Li
,
Y.
Bando
,
T.
Sato
, and
K.
Kurashima
,
Appl. Phys. Lett.
81
,
144
(
2002
).
8.
Z. W.
Pan
,
Z. R.
Dai
, and
Z. L.
Wang
,
Science
291
,
1947
(
2001
).
9.
J. Q.
Hu
,
Q.
Li
,
X. M.
Meng
,
C. S.
Lee
, and
S. T.
Lee
,
Chem. Mater.
15
,
305
(
2003
).
10.
I. W.
Park
,
D. H.
Jung
,
S.-W.
Jung
, and
G.-C.
Yi
,
Appl. Phys. Lett.
80
,
4232
(
2002
).
11.
12.
L.
Vayssieres
,
Adv. Mater. (Weinheim, Ger.)
15
,
464
(
2003
).
13.
Q.
Zhu
,
Y. Z.
Jin
,
H. W.
Kroto
, and
D. R.
Walton
,
J. Mater. Chem.
14
,
685
(
2004
).
14.
C.
Schuffenhauer
,
R. P.
Biro
, and
R.
Tenne
,
J. Mater. Chem.
12
,
1587
(
2002
).
15.
H.
Zhang
,
D.
Yang
,
X.
Ma
,
Y.
Ji
,
J.
Xu
, and
D.
Que
,
Nanotechnology
15
,
622
(
2004
).
16.
E.
Hosono
,
S.
Fujihara
,
T.
Kimura
, and
H.
Imai
,
J. Colloid Interface Sci.
272
,
391
(
2004
).
17.
L.
Poul
,
N.
Jouini
, and
F.
Fiévet
,
Chem. Mater.
12
,
3123
(
2000
).
18.
E.
Hosono
,
S.
Fujihara
, and
T.
Kimura
,
Electrochim. Acta
49
,
2287
(
2004
).
19.
S. H.
Yu
,
J.
Yang
,
Y. T.
Qian
, and
M.
Yoshimura
,
Chem. Phys. Lett.
361
,
362
(
2002
).
20.
Y. B.
Li
,
Y.
Bando
, and
D.
Golberg
,
Appl. Phys. Lett.
82
,
1962
(
2003
).
21.
Y.
Yang
,
H.
Chen
,
B.
Zhao
, and
X.
Bao
,
J. Cryst. Growth
263
,
447
(
2004
).
22.
A. V.
Ghule
,
B.
Lo
,
S.-H.
Tzing
,
K.
Ghule
,
H.
Chang
, and
Y. C.
Ling
,
Chem. Phys. Lett.
381
,
262
(
2003
).
23.
J. A.
Dean
,
Lange’s Handbook of Chemistry
, 12th ed. (
McGraw-Hill
, New York,
1979
).
24.
R. J.
Shen
,
D. Z.
Jia
,
Y. M.
Qiao
, and
Y.
Wang
,
Int. J. Inorg. Mater.
16
,
625
(
2001
).
25.
L.
Guo
,
Y.
Ji
,
H.
Xu
,
Z.
Wu
, and
P.
Simon
,
J. Mater. Chem.
13
,
754
(
2003
).
26.
T.
Arii
and
A.
Kishi
,
Thermochim. Acta
400
,
175
(
2003
).
27.
M. H.
Huang
,
Y.
Wu
,
H.
Feick
,
N.
Tran
,
E.
Weber
, and
P.
Yang
,
Adv. Mater. (Weinheim, Ger.)
13
,
113
(
2001
).
28.
S. W.
Jung
,
W. I.
Park
,
G. C.
Yi
, and
M.
Kim
,
Adv. Mater. (Weinheim, Ger.)
15
,
1358
(
2003
).
29.
M. K.
Puchert
,
P. Y.
Timbrell
, and
R. N.
Lamb
,
J. Vac. Sci. Technol. A
14
,
2220
(
1996
).
30.
X.
Zhao
,
B.
Zheng
,
C.
Li
, and
H.
Gu
,
Powder Technol.
100
,
20
(
1998
).
31.
T. C.
Damen
,
S. P. S.
Porto
, and
B.
Tell
,
Phys. Rev.
142
,
570
(
1966
).
32.
S. K.
Sharma
and
G. J.
Exarhos
,
Solid State Phenom.
55
,
32
(
1997
).
33.
Z.
Zhaochun
,
H.
Baibiao
,
Y.
Yongqin
, and
C.
Deliang
,
Mater. Sci. Eng., B
86
,
109
(
2001
).
34.
M.
Rajalakshmi
,
A. K.
Arora
,
B. S.
Bendre
, and
S.
Mahamuni
,
J. Appl. Phys.
87
,
2445
(
2000
).
35.
B. K.
Meyer
 et al.,
Phys. Status Solidi B
241
,
231
(
2004
).
36.
S. A.
Studenikin
,
M.
Cocivera
,
W.
Kellner
, and
H.
Pascher
,
J. Lumin.
91
,
223
(
2000
).
37.
Y. S.
Jung
,
K. O.
Kononenko
, and
W. K.
Choi
,
Phys. Rev. B
(unpublished).
38.
Y. P.
Varshni
,
Physica (Utrecht)
34
,
149
(
1967
).
39.
C. J.
Youn
,
T. S.
Jeong
,
M. S.
Han
, and
J. H.
Kim
,
J. Cryst. Growth
261
,
526
(
2004
).
40.
W. Y.
Liang
and
Y. D.
Yoffe
,
Phys. Rev. Lett.
20
,
59
(
1968
).
41.
B.
Ray
,
II-VI Compounds
(
Pergamon
, Oxford,
1969
), p.
54
.
42.
E.
Kaldis
,
Current Topics in Materials Science
(
North-Holland
, Amsterdam,
1982
) Vol.
9
, p.
33
.
You do not currently have access to this content.