The effective thermal diffusivity of metal powders in air at room temperature is measured by the photopyroelectric technique. The thermal conductivity is calculated from the diffusivity, the relative density, and the specific heat obtained from literature. Maxwell’s model is a good prediction but underestimates the measured effective thermal conductivity, especially for irregular particles. Due to the large difference between the thermal conductivity of metals and air, the effective conductivity is mainly determined by the relative density of the powder bed but not by the properties of the powder material. A theoretical model showing the influence of grain size and gas pressure is presented. The dependence on the particles’ size and pressure is explained by the gradual transition from the free molecular to conductive mechanism of heat transfer in gaps between particles. The theory gives a precise estimation of effective thermal conductivity for metallic powders with a narrow size distribution of spherical particles and it underestimates this value in the case of a wide size distribution or in the case of irregular particles.

1.
J. P.
Kruth
,
P.
Mercelis
,
J.
Van Vaerenbergh
,
L.
Froyen
, and
M.
Rombouts
,
Proceedings of the 1st International Conference on Advanced Research in Virtual and Rapid Prototyping (VRAP)
,
Leiria
, Portugal, 1–4 October
2003
(
Escola Superior de Tecnologia e Gestao de Leiria
, Portugal,
2003
), p.
59
.
2.
J. C.
Maxwell
,
Electricity and Magnetism
(
Clarendon Press
, Oxford,
1873
), p.
365
.
3.
D. A. G.
Bruggeman
,
Ann. Phys. (Leipzig)
24
,
636
(
1935
).
4.
R. E.
Meredith
and
C. W.
Tobias
,
J. Electrochem. Soc.
108
,
286
(
1961
).
5.
Y. C.
Chiew
and
E.
Glandt
,
J. Colloid Interface Sci.
94
,
90
(
1983
).
6.
V. R.
Raghavan
and
H.
Martin
,
Chem. Eng. Process.
34
,
439
(
1995
).
7.
Z.
Yinping
and
L.
Xingang
,
Mater. Des.
16
,
91
(
1995
).
8.
H. S.
Kou
,
K. T.
Lu
, and
C. C.
Yu
,
Comput. Struct.
53
,
569
(
1994
).
9.
A. A.
Zick
,
Int. J. Heat Mass Transfer
26
,
465
(
1983
).
10.
J. H.
Ferziger
and
H. G.
Kaper
,
Mathematical Theory of Transport Processes in Gases
(
North-Holland
, Amsterdam,
1972
).
11.
R. G.
Deissler
and
J. S.
Boegli
,
Trans. ASME
80
,
1417
(
1958
).
12.
A. E.
Tontowi
and
T. H. C.
Childs
,
Proceedings of the 1st Science and Technology Meeting
,
Leeds
, UK, 6–8 August
1999
, edited by
A.
Setyawan
,
A. E.
Tonowi
, and
Y. S.
Nugroho
(
PPI
, Leeds,
1999
), p.
95
.
13.
W.
Parker
,
R. J.
Jenkins
,
C. P.
Butler
, and
G. L.
Abott
,
J. Appl. Phys.
32
,
1679
(
1961
).
14.
I. H.
Tavman
,
Int. Commun. Heat Mass Transfer
23
,
169
(
1996
).
15.
S. E.
Gustafsson
,
Rev. Sci. Instrum.
62
,
797
(
1991
).
16.
A.
Rossencwaig
and
A.
Gersho
,
J. Appl. Phys.
47
,
64
(
1976
).
17.
A.
Mandelis
and
M. M.
Zver
,
J. Appl. Phys.
57
,
4421
(
1985
).
18.
J.
Caerels
,
C.
Glorieux
, and
J.
Thoen
,
Rev. Sci. Instrum.
69
,
2452
(
1998
).
19.
E. H.
Bentefour
,
C.
Glorieux
,
M.
Chirtoc
, and
J.
Thoen
,
J. Appl. Phys.
93
,
9610
(
2003
).
20.
S. J.
McGovern
,
B. S. H.
Royce
, and
J. B.
Benziger
,
J. Appl. Phys.
57
,
1710
(
1985
).
21.
J. P.
Monchalin
,
L.
Bertrand
,
G.
Rousset
, and
F.
Lepoutre
,
J. Appl. Phys.
56
,
190
(
1984
).
22.
L.
Taylor
,
Metals Handbook 1: Properties and Selection of Metals
, 8th ed. (
American Society for Metals
, Metals Park, Ohio,
1961
).
23.
J. P.
Kruth
,
B.
Van der Schueren
,
B.
Morren
, and
J.
Bonse
,
Ann. ICRP
45
,
183
(
1996
).
24.
A. V.
Luikov
,
A. G.
Shashkov
,
L. L.
Vasiliev
, and
Yu. E.
Fraiman
,
Int. J. Heat Mass Transfer
11
,
117
(
1968
).
25.
D. L.
Swift
,
Int. J. Heat Mass Transfer
9
,
1061
(
1966
).
26.
G. K.
Batchelor
and
R. W.
O’Brien
,
Proc. R. Soc. London, Ser. A
355
,
313
(
1977
).
27.
A. V.
Gusarov
,
T.
Laoui
,
L.
Froyen
, and
V. I.
Titov
,
Int. J. Heat Mass Transfer
46
,
1103
(
2003
).
28.
S. K.
Hsu
and
T. F.
Morse
,
Rarefied Gas Dynamics
(
Academic
, New York,
1967
), p.
419
.
29.
R.
Bracewell
,
The Fourier Transform and Its Applications
(
McGraw-Hill
, New York,
1999
), p.
244
.
You do not currently have access to this content.