The plastic deformation of nanoporous Au under compressive stress was studied by depth-sensing nanoindentation combined with scanning electron microscope characterization. The nanoporous Au investigated in the current study exhibits a relative density of 42%, and a spongelike morphology of interconnecting ligaments on a length scale of 100nm. The material is polycrystalline with a grain size on the order of 1060nm. Microstructural characterization of residual indentation impressions reveals a localized densification via ductile (plastic) deformation under compressive stress and demonstrates the ductile behavior of Au ligaments. A mean hardness of 145(±11)MPa and a Young’s modulus of 11.1(±0.9)GPa was obtained from the analysis of the load-displacement curves. The hardness of investigated npAu is 10 times higher than the hardness predicted by scaling laws of open-cell foams thus potentially opening a door to a class of high yield strength—low-density materials.

1.
K.
Sieradzki
and
R. C.
Newman
,
Philos. Mag. A
51
,
95
(
1985
).
2.
F.
Friedersdorf
and
K.
Sieradzki
,
Corros. Sci.
52
,
331
(
1996
).
3.
R. G.
Kelly
,
A. J.
Frost
,
T.
Shahrabi
, and
R. C.
Newman
,
Metall. Trans. A
22
,
531
(
1991
).
4.
J.
Weissmuller
,
R. N.
Viswanath
,
D.
Kramer
,
P.
Zimmer
,
R.
Wurschum
, and
H.
Gleiter
,
Science
300
,
312
(
2003
).
5.
J.
Erlebacher
,
M. J.
Aziz
,
A.
Karma
,
N.
Dimitrov
, and
K.
Sieradzki
,
Nature (London)
410
,
450
(
2001
).
6.
R. C.
Newman
,
S. G.
Corcoran
,
J.
Erlebacher
,
M. J.
Aziz
, and
K.
Sieradzki
,
MRS Bull.
24
,
24
(
1999
).
7.
J.
Erlebacher
and
K.
Sieradzki
,
Scr. Mater.
49
,
991
(
2003
).
8.
K.
Sieradzki
,
R. R.
Corderman
,
K.
Shukla
, and
R. C.
Newman
,
Philos. Mag. A
59
,
713
(
1989
).
9.
R.
Li
and
K.
Sieradzki
,
Phys. Rev. Lett.
68
,
1168
(
1992
).
10.
K.
Sieradzki
,
N.
Dimitrov
,
D.
Movrin
,
C.
McCall
,
N.
Vasiljevic
, and
J.
Erlebacher
,
J. Electrochem. Soc.
149
,
B370
(
2002
).
11.
Y.
Ding
and
J.
Erlebacher
,
J. Am. Chem. Soc.
125
,
7772
(
2003
).
12.
Y.
Toivola
,
A.
Stein
, and
R. F.
Cook
,
J. Mater. Res.
19
,
260
(
2004
).
13.
A. C.
Fischer-Cripps
,
Nanoindentation
(
Springer
, New York,
2002
).
14.
S. G.
Corcoran
,
R. J.
Colton
,
E. T.
Lilleodden
, and
W. W.
Gerberich
,
Phys. Rev. B
55
,
16057
(
1997
).
15.
L. J.
Gibson
and
M. F.
Ashby
,
Cellular Solids: Structure and Properties
, 2nd ed. (
Cambridge University Press
, Cambridge,
1997
).
16.
R.
Brezny
and
D. J.
Green
,
Annu. Rev. Mater. Sci.
38
,
2517
(
1990
).
17.
U.
Landman
,
W. D.
Luedtke
, and
J. P.
Gao
,
Langmuir
12
,
4514
(
1996
).
18.
N.
Agrait
,
G.
Rubio
, and
S.
Vieira
,
Phys. Rev. Lett.
74
,
3995
(
1995
).
19.
A.
Stalder
and
U.
Durig
,
Appl. Phys. Lett.
68
,
637
(
1996
).
20.
J. D.
Kiely
and
J. E.
Houston
,
Phys. Rev. B
57
,
12588
(
1998
).
21.
A.
Stalder
and
U.
Durig
,
J. Vac. Sci. Technol. B
14
,
1259
(
1996
).
22.
W. C.
Oliver
and
G. M.
Pharr
,
J. Mater. Res.
7
,
1564
(
1992
).
23.
O. B.
Olurin
,
N. A.
Fleck
, and
M. F.
Ashby
,
Scr. Mater.
43
,
983
(
2000
).
24.
Metals Handbook
, 2nd ed. (
American Society for Metals ASM International
, Metals Materials Park, OH,
1998
).
You do not currently have access to this content.