We have measured nonresonant and resonant Raman-scattering spectra from ZnO nanocrystals with an average diameter of 20nm. Based on our experimental data and comparison with the recently developed theory, we show that the observed shifts of the polar optical-phonon peaks in the resonant Raman spectra are not related to the spatial phonon confinement. The very weak dispersion of the polar optical phonons in ZnO nanocrystals does not lead to any noticeable redshift of the phonon peaks for 20-nm nanocrystals. The observed phonon shifts have been attributed to the local heating effects. We have demonstrated that even the low-power ultraviolet laser excitation, required for the resonant Raman spectroscopy, can lead to the strong local heating of ZnO nanocrystals. The latter causes significant (up to 14cm1) redshift of the optical-phonon peaks compared to their position in bulk crystals. Nonresonant Raman excitation does not produce noticeable local heating. The obtained results can be used for identification of the phonons in the Raman spectra of ZnO nanostructures.

1.
Y.
Chen
,
D. M.
Bagnall
,
H.
Koh
,
K.
Park
,
K.
Hiraga
,
Z.
Zhu
, and
T.
Yao
,
J. Appl. Phys.
84
,
3912
(
1998
).
2.
X. T.
Zhang
 et al,
J. Phys. D
34
,
3430
(
2001
).
3.
C.
Bundesmann
,
N.
Ashkenov
,
M.
Schubert
,
D.
Spemann
,
T.
Butz
,
E. M.
Kaidashev
,
M.
Lorenz
, and
M.
Grundmann
,
Appl. Phys. Lett.
83
,
1974
(
2003
).
4.
A.
Kaschner
 et al,
Appl. Phys. Lett.
80
,
1909
(
2002
).
5.
H. T.
Ng
,
B.
Chen
,
J.
Li
,
J.
Han
,
M.
Meyyappan
,
J.
Wu
,
S. X.
Li
, and
E. E.
Haller
,
Appl. Phys. Lett.
82
,
2023
(
2003
).
6.
X.
Wang
,
Q.
Li
,
Z.
Liu
,
J.
Zhang
,
Z.
Liu
, and
R.
Wang
,
Appl. Phys. Lett.
84
,
4941
(
2004
).
7.
C.
Geng
,
Y.
Jiang
,
Y.
Yao
,
X.
Meng
,
J. A.
Zapien
,
C. S.
Lee
,
Y.
Lifshitz
, and
S. T.
Lee
,
Adv. Funct. Mater.
14
,
589
(
2004
).
8.
R. P.
Wang
,
G.
Xu
, and
P.
Jin
,
Phys. Rev. B
69
,
113303
(
2004
).
9.
Y. J.
Xing
 et al,
Appl. Phys. Lett.
83
,
1689
(
2003
).
10.
C.
Xu
,
G.
Xu
,
Y.
Liu
, and
G.
Wang
,
Solid State Commun.
122
,
175
(
2002
).
11.
X. H.
Zhang
,
S. Y.
Xie
,
Z. Y.
Jiang
,
X.
Zhang
,
Z. Q.
Tian
,
Z. H.
Xie
,
R. B.
Huang
, and
L. S.
Zheng
,
J. Phys. Chem. B
107
,
10114
(
2003
).
12.
M.
Rajalakshmi
,
A. K.
Arora
,
B. S.
Bendre
, and
S.
Mahamuni
,
J. Appl. Phys.
87
,
2445
(
2000
).
13.
H.
Zhou
,
H.
Alves
,
D. M.
Hofmann
,
W.
Kriegseis
,
B. K.
Meyer
,
G.
Kaczmarczyk
, and
A.
Hoffmann
,
Appl. Phys. Lett.
80
,
210
(
2002
).
14.
Z.
Wang
,
H.
Zhang
,
L.
Zhang
,
J.
Yuan
,
S.
Yan
, and
C.
Wang
,
Nanotechnology
14
,
11
(
2003
).
15.
N.
Ashkenov
 et al,
J. Appl. Phys.
93
,
126
(
2003
).
16.
J. F.
Scott
,
Phys. Rev. B
2
,
1209
(
1970
).
17.
K. A.
Alim
,
V. A.
Fonoberov
, and
A. A.
Balandin
,
Appl. Phys. Lett.
86
,
053103
(
2005
).
18.
H.
Richter
,
Z. P.
Wang
, and
L.
Ley
,
Solid State Commun.
39
,
625
(
1981
).
19.
V. A.
Fonoberov
and
A. A.
Balandin
,
Phys. Rev. B
70
,
233205
(
2004
).
20.
V. A.
Fonoberov
and
A. A.
Balandin
,
Phys. Status Solidi C
1
,
2650
(
2004
).
21.
V. A.
Fonoberov
and
A. A.
Balandin
,
J. Phys.: Condens. Matter
17
,
1085
(
2005
).
22.
P. G.
Klemens
,
Phys. Rev.
148
,
845
(
1966
).
23.
T. R.
Hart
,
R. L.
Aggarwal
, and
B.
Lax
,
Phys. Rev. B
1
,
638
(
1970
).
24.
H. W.
Lo
and
A.
Compaan
,
J. Appl. Phys.
51
,
1565
(
1980
).
25.
R.
Tsu
and
J. G.
Hernandez
,
Appl. Phys. Lett.
41
,
1016
(
1982
).
26.
M.
Balkanski
,
R. F.
Wallis
, and
E.
Haro
,
Phys. Rev. B
28
,
1928
(
1983
).
27.
J.
Menendez
and
M.
Cardona
,
Phys. Rev. B
29
,
2051
(
1984
).
28.
S.
Piscanec
,
M.
Cantoro
,
A. C.
Ferrari
,
J. A.
Zapien
,
Y.
Lifshitz
,
S. T.
Lee
,
S.
Hofmann
, and
J.
Robertson
,
Phys. Rev. B
68
,
241312
(
2003
).
29.
R. S.
Krishnan
,
Proc. Indian Acad. Sci., Sect. A
24
,
45
(
1946
).
30.
E.
Anatassakis
,
H. C.
Hwang
, and
C. H.
Perry
,
Phys. Rev. B
4
,
2493
(
1971
).
31.
W. J.
Borer
,
S. S.
Mitra
, and
K. V.
Namjoshi
,
Solid State Commun.
9
,
1377
(
1971
).
32.
R. A.
Cowley
,
J. Phys. (Paris)
26
,
659
(
1965
).
33.
A.
Temple
and
C. E.
Hathaway
,
Phys. Rev. B
7
,
3685
(
1973
).
34.
F.
Cerdeira
and
M.
Cardona
,
Phys. Rev. B
5
,
1440
(
1972
).
35.
J. H.
Jung
,
Solid State Commun.
133
,
103
(
2004
).
36.
J.
Serrano
,
F. J.
Manjon
,
A. H.
Romero
,
F.
Widulle
,
R.
Lauck
, and
M.
Cardona
,
Phys. Rev. Lett.
90
,
055510
(
2003
).
37.
L.
Bergman
,
X. B.
Chen
,
J. L.
Morrison
,
J.
Huso
, and
A. P.
Purdy
,
J. Appl. Phys.
96
,
675
(
2004
).
38.
K.
Park
,
J. S.
Lee
,
M. Y.
Sung
, and
S.
Kim
,
Jpn. J. Appl. Phys., Part 1
41
,
7317
(
2002
).
39.
W. S.
Li
,
Z. X.
Shen
,
Z. C.
Feng
, and
S. J.
Chua
,
J. Appl. Phys.
87
,
3332
(
2000
).
40.
F.
Decremps
,
J.
Pellicer-Porres
,
A. M.
Saitta
,
J. C.
Chervin
, and
A.
Polian
,
Phys. Rev. B
65
,
092101
(
2002
).
41.
H.
Iwanaga
,
A.
Kunishige
, and
S.
Takeuchi
,
J. Mater. Sci.
35
,
2451
(
2000
).
You do not currently have access to this content.