We have investigated theoretically the thermoelectric effects in wurtzite GaN crystals and AlxGa1xN alloys. The electron-transport model includes all dominant energy-dependent electron-scattering mechanisms, such as charged dislocation and ionized impurity scattering, polar optical phonon, deformation potential, and piezoelectric acoustic-phonon scattering. The results of the calculation show that GaN-based alloys may have some potential as thermoelectric materials at high temperature. It was found that the thermoelectric figure-of-merit for bulk GaN at T=300K is about 0.0017 while it can reach 0.2 in the thermally resistive Al0.4Ga0.6N alloy at T=1000K. The obtained results agree well with available experimental data. The developed calculation procedure can be used for the optimization of the thermoelectric properties of GaN alloys. The proposed integration of the GaN high-power microwave and optoelectronic devices with the active thermoelectric cooling implemented on the same material system can improve the device performance.

1.
U. K.
Mishra
,
P.
Parikh
, and
Y.-F.
Wu
,
Proc. IEEE
90
,
1022
(
2002
).
2.
J.
Li
,
S. J.
Cai
,
G. Z.
Pan
,
Y. L.
Chen
,
C. P.
Wen
, and
K. L.
Wang
,
Electron. Lett.
37
,
196
(
2001
).
3.
H.
Morkoc
,
Nitride Semiconductor and Devices
(
Springer
, Berlin,
1999
).
4.
Y.
Wu
,
B. P.
Keller
,
S.
Keller
,
J. J.
Xu
,
B. J.
Thibeault
,
S. P.
Denbaars
, and
U. K.
Mishra
,
IEICE Trans. Electron.
E82-C
,
1895
(
1999
).
5.
O.
Ambacher
 et al,
J. Appl. Phys.
87
,
334
(
2000
).
6.
R.
Gaska
,
J. W.
Yang
,
A.
Osinsky
,
Q.
Chen
,
M. A.
Khan
,
A. O.
Orlov
,
G. L.
Snider
, and
M. S.
Shur
,
Appl. Phys. Lett.
72
,
707
(
1998
).
7.
S. T.
Sheppard
,
K.
Doverspike
,
W. L.
Pribble
,
S. T.
Allen
,
J. W.
Palmour
,
L. T.
Kehis
, and
T. J.
Jenkins
,
IEEE Electron Device Lett.
20
,
161
(
1999
).
8.
S.
Keller
,
Y.-F.
Wu
,
G.
Parish
,
N.
Zhang
,
J. J.
Xu
,
B. P.
Keller
,
S. P.
DenBaars
, and
U. K.
Mishra
,
IEEE Trans. Electron Devices
48
,
552
(
2001
).
9.
A. A.
Balandin
,
S. V.
Morozov
,
S.
Cai
,
R.
Li
,
K. L.
Wang
,
G.
Wijeratne
, and
C. R.
Viswanathan
,
IEEE Trans. Microwave Theory Tech.
47
,
1413
(
1999
);
A. A.
Balandin
,
Electron. Lett.
36
,
912
(
2000
).
10.
S. L.
Rumyantsev
 et al,
Semicond. Sci. Technol.
18
,
589
(
2003
).
11.
M.
Kuball
 et al,
IEEE Electron Device Lett.
23
,
7
(
2002
).
12.
G. J.
Snyder
 et al,
J. Appl. Phys.
92
,
1564
(
2002
).
13.
A.
Yamamoto
and
S.
Yamaguchi
,
Mater. Res. Soc. Symp. Proc.
793
,
S8
24
(
2004
).
14.
S.
Yamaguchi
,
Y.
Iwamura
, and
A.
Yamamoto
,
Appl. Phys. Lett.
82
,
2065
(
2003
).
15.
S.
Yamaguchi
,
R.
Izaki
,
K.
Yamagiwa
,
K.
Taki
,
Y.
Iwamura
, and
A.
Yamamoto
,
Appl. Phys. Lett.
83
,
5398
(
2003
).
16.
CRC Handbook of Thermoelectrics
, edited by
D. M.
Rowe
(
CRC
, Boca Raton,
1995
).
17.
O.
Katz
,
A.
Horn
,
G.
Bahir
, and
J.
Salzman
,
IEEE Trans. Electron Devices
50
,
2002
(
2003
).
18.
N. G.
Weimann
,
L. F.
Eastman
,
D.
Doppalapudi
,
H. M.
Ng
, and
T. D.
Moustakas
,
J. Appl. Phys.
83
,
3656
(
1998
).
19.
D. C.
Look
and
J. R.
Sizelove
,
Phys. Rev. Lett.
82
,
1237
(
1999
).
20.
W.
Knap
 et al,
Appl. Phys. Lett.
80
,
1228
(
2002
).
21.
B. K.
Ridley
,
B. E.
Foutz
, and
L. F.
Eastman
,
Phys. Rev. B
61
,
16862
(
2000
).
22.
J.-L.
Farvacque
and
Z.
Bougrioua
,
Phys. Rev. B
68
,
035335
(
2003
).
23.
W. L.
Liu
and
A. A.
Balandin
,
Appl. Phys. Lett.
85
,
5230
(
2004
).
24.
W. L.
Liu
and
A. A.
Balandin
,
J. Appl. Phys.
97
,
073710
(
2005
).
25.
B. R.
Nag
,
Electron Transport in Compound Semiconductors
(
Springer
, New York, (
1980
);
N. W.
Aschcroft
and
N. D.
Mermin
,
Solid State Physics
(
Holt, Rinehart and Winston
, Philadelphia, New York (
1976
).
26.
A.
Balandin
,
S.
Morozov
,
G.
Wijeratne
,
S. J.
Cai
,
R.
Li
,
J.
Li
,
K. L.
Wang
, et al,
Appl. Phys. Lett.
75
,
2064
(
1999
).
27.
J.
Wang
,
R.
Kaplan
,
H. K.
Ng
,
K.
Doverspike
,
D. K.
Gaskill
,
T.
Ikedo
,
I.
Akasaki
, and
H.
Amono
,
J. Appl. Phys.
79
,
8007
(
1996
).
28.
M.
Luong
and
A. W.
Shaw
,
Phys. Rev. B
4
,
2436
(
1971
).
29.
For example,
B. K.
Ridley
,
Quantum Processes in Semiconductors
, 4th ed. (
Oxford University Press
, New York,
1982
).
30.
W. G.
Cady
,
Piezoelectricity
(
Dover
, New York,
1964
).
31.
J.
Singh
,
Physics of Semiconductors and their Heterostructures
(
McGraw-Hill
, New York,
1993
).
32.
A. F.
Ioffe
,
Semiconductor Thermoelements and Thermoelectric Cooling
(
Infosearch
, London,
1956
).
33.
D.
Kotchetkov
 et al,
Appl. Phys. Lett.
79
,
4316
(
2001
).
34.
J.
Zou
 et al,
J. Appl. Phys.
92
,
2534
(
2002
).
35.
Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe
, edited by
M. E.
Levinshtein
,
S. L.
Rumyantsev
, and
M. S.
Shur
(
Wiley
, New York,
2001
).
36.
C.
Shi
,
P. M.
Asbeck
, and
E. T.
Yu
,
Appl. Phys. Lett.
74
,
573
(
1999
).
37.
B. C.
Daly
,
H. J.
Maris
,
A. V.
Numikko
,
M.
Kuball
, and
J.
Han
,
J. Appl. Phys.
92
,
3820
(
2002
).
38.
M. A.
Afromowtz
,
J. Appl. Phys.
44
,
1292
(
1973
).
39.
H.
Stohr
and
W.
Klemm
,
Z. Anorg. Allg. Chem.
241
,
305
(
1954
).
40.
A. A.
Balandin
and
K. L.
Wang
,
Phys. Rev. B
58
,
1544
(
1998
).
41.
A. A.
Balandin
and
K. L.
Wang
,
J. Appl. Phys.
84
.
6149
(
1998
).
42.
E. P.
Pokatilov
,
D. L.
Nika
, and
A. A.
Balandin
,
J. Appl. Phys.
95
,
5626
(
2004
);
E. P.
Pokatilov
,
D. L.
Nika
, and
A. A.
Balandin
,
Superlattices Microstruct.
33
,
155
(
2003
).
43.
E. P.
Pokatilov
,
D. L.
Nika
, and
A. A.
Balandin
,
Appl. Phys. Lett.
85
,
825
(
2004
).
44.
A. A.
Balandin
and
O. L.
Lazarenkova
,
Appl. Phys. Lett.
82
,
415
(
2003
).
45.
W. L.
Liu
 et al,
J. Nanosci. Nanotechnol.
1
,
39
(
2001
).
46.
A.
Casian
,
I.
Sur
,
H.
Scherrer
, and
Z.
Dashevsky
,
Phys. Rev. B
61
,
15965
(
2000
).
You do not currently have access to this content.