The effects of contamination overlayer and density as well as surface and interface roughnesses on the x-ray reflectivity of a SiO2 ultrathin film are discussed from viewpoints of experiment and theory. Grazing incidence x-ray reflectivity (GIXRR) is used to accurately measure physical structures of SiO2 ultrathin films grown on Si substrate by effectively resolving deviations caused by a contamination overlayer (i.e., H2O and carbonaceous compounds). GIXRR results indicate that only the thickness accuracy of a SiO2 film is largely affected by the overlayer. The thickness of a SiO2 film obtained from GIXRR peak extrema and theoretical fitting reveals that if a SiO2 film with the thickness of 2.64nm is considered as a single layer, the H2O overlayer with a thickness of 0.55nm makes the thickness of the SiO2 film increase to 3.09nm, and the deviation is about 17% from its corrected thickness. By evaluating the GIXRR results of three repeating measurements of a nominal 4nmSiO2 film, its density, thickness, and surface and interface roughnesses are 2.43±0.01gcm3, 3.99±0.03nm, and 0.40±0.02nm and 0.25±0.02nm, respectively.

1.
B.
Doyle
,
R.
Arghavani
,
D.
Barlage
,
S.
Datta
,
M.
Doczy
,
J.
Kavalieros
,
A.
Murthy
, and
R.
Chau
, Intel Technology Journal
6
,
42
(
2002
).
2.
C. J.
Forst
,
C. R.
Ashman
,
K.
Schwarz
, and
P. E.
Blochl
,
Nature (London)
427
,
53
(
2003
).
3.
T.
Nishiguchi
,
H.
Nonaka
,
S.
Ichimura
,
Y.
Morikawa
,
M.
Kekura
, and
Ma.
Miyamoto
,
Appl. Phys. Lett.
81
,
2190
(
2002
).
4.
W.
Futako
,
N.
Mizuochi
, and
S.
Yamasaki
,
Phys. Rev. Lett.
92
,
105505
(
2004
).
5.
M.
Houssa
,
A.
Stesmans
,
R. J.
Carter
, and
M. M.
Heyns
,
Appl. Phys. Lett.
78
,
3289
(
2001
).
6.
N.
Gayathri
and
S.
Banerjee
,
Appl. Phys. Lett.
84
,
5192
(
2004
).
7.
K.
Takahashi
,
H.
Nohira
,
K.
Hirose
, and
T.
Hattori
,
Appl. Phys. Lett.
83
,
3422
(
2003
).
8.
R. F.
Klie
,
N. D.
Browning
,
A. R.
Chowdhuri
, and
C. G.
Takoudis
,
Appl. Phys. Lett.
83
,
1187
(
2003
).
9.
M. P.
Seah
and
S. J.
Spencer
,
Surf. Interface Anal.
33
,
640
(
2002
).
10.
D. A.
Cole
 et al.,
J. Vac. Sci. Technol. B
18
,
440
(
2000
).
11.
Z. H.
Hu
,
J. P.
McCaffrey
,
B.
Brar
,
G. D.
Wilk
,
R. M.
Wallace
,
L. C.
Feldman
, and
S. P.
Tay
,
Appl. Phys. Lett.
71
,
2764
(
1997
).
12.
I.
Kojima
and
B. Q.
Li
,
Rigaku J.
16
,
31
(
1999
).
13.
L. G.
Parratt
,
Phys. Rev.
95
,
359
(
1954
).
14.
B. Q.
Li
,
W. T.
Xu
,
T.
Fujimoto
, and
I.
Kojima
,
J. Appl. Phys.
95
,
1600
(
2004
).
15.
S.
Banerjee
 et al.,
Appl. Phys. Lett.
72
,
433
(
1998
);
S.
Banerjee
,
S.
Ferrari
,
R.
Piagge
, and
S.
Spandoni
,
Appl. Phys. Lett.
84
,
3798
(
2004
).
16.
E.
Bellandi
 et al.,
Thin Solid Films
450
,
120
(
2004
).
17.
H.
Kiessig
,
Ann. Phys.
10
,
796
(
1931
).
18.
A.
Segmuller
,
Thin Solid Films
18
,
287
(
1973
).
19.
I.
Kojima
,
B. Q.
Li
, and
T.
Fujimoto
,
Thin Solid Films
355–356
,
385
(
1999
).
20.
J.
Ehrstein
 et al.,
2003 International Conference on Characterization and Metrology for ULSI Technology
, edited by
D. G.
Seiler
,
A. C.
Diebold
,
T. J.
Shaffner
,
R.
McDonald
,
S.
Zollner
,
R. P.
Khosla
, and
E. M.
Secula
,
AIP Conf. Proc.
No.
683
(
American Institute of Physics
, Melville, NY,
2003
), p.
331
.
21.
B. Q.
Li
,
W. T.
Xu
,
T.
Fujimoto
, and
I.
Kojima
,
J. Appl. Phys.
95
,
1600
(
2004
).
22.
M.
Shioji
 et al.,
Appl. Phys. Lett.
84
,
3756
(
2004
).
23.
M.
Gotoh
,
K.
Sudoh
,
H.
Itoh
,
K.
Kawamoto
, and
H.
Iwasaki
,
Appl. Phys. Lett.
81
,
430
(
2002
).
24.
R.
Ruiz
,
B.
Nickel
,
N.
Koch
,
L. C.
Feldman
,
R. F.
Haglund
,
A.
Kahn
, and
G.
Scoles
,
Phys. Rev. B
67
,
125406
(
2003
).
25.
S. Q.
Wei
,
B. Q.
Li
,
T.
Fujimoto
, and
I.
Kojima
,
Phys. Rev. B
58
,
3605
(
1998
).
You do not currently have access to this content.