In this paper, the effects of ion irradiation on Schottky barriers formed on silicon carbide are discussed. After Si-ion irradiation at the near-interface region in Ti/4H-SiC contacts an increase of the Schottky barrier height from 1.05 to 1.21 eV was observed, accompanied by a lowering of the reverse leakage current. The combination of several methods allowed us to determine the physical properties of the Schottky barrier and to explain the mechanism responsible for the barrier height changes. In particular, the structural and electrical modifications of the interfacial region, both of Ti layer and SiC (i.e., different orientation of the Ti layer, irradiation-induced defects in the epilayer, dopant deactivation, and the consequent reduction of the surface electric field) are responsible for the increase of the Schottky barrier height and the reduction of the leakage current. The electrical characterization of the contacts at different temperatures also suggested that ion irradiation induced modifications in the inhomogeneous nature of the Ti Schottky barrier.

1.
L. M.
Porter
and
R. F.
Davis
,
Mater. Sci. Eng., B
34
,
83
(
1995
).
3.
B. J.
Skromme
,
E.
Luckowski
,
K.
Moore
,
M.
Bhatnagar
,
C. E.
Weitzel
,
T.
Gehoski
, and
D.
Ganser
,
J. Electron. Mater.
29
,
376
(
2000
).
4.
C.
Raynaud
,
K.
Isoird
,
M.
Lazar
,
C. M.
Johnson
, and
N.
Wright
,
J. Appl. Phys.
91
,
9841
(
2002
).
5.
M. O.
Aboelfotoh
,
C.
Fröjdh
, and
C. S.
Petersson
,
Phys. Rev. B
67
,
075312
(
2003
).
6.
F.
Roccaforte
,
F.
La Via
,
V.
Raineri
,
L.
Calcagno
,
P.
Musumeci
, and
G. G.
Condorelli
,
Appl. Phys. A
77
,
827
(
2003
).
7.
F.
Roccaforte
,
F.
La Via
,
V.
Raineri
,
R.
Pierobon
, and
E.
Zanoni
,
J. Appl. Phys.
93
,
9137
(
2003
).
8.
T.
Teraji
and
S.
Hara
,
Phys. Rev. B
70
,
035312
(
2004
).
9.
K.
Wongchotigul
, in
Properties of Silicon Carbide
, edited by
G. L.
Harris
(
INSPEC
, IEE, London,
1995
), pp.
157
161
.
10.
D.
Dwight
,
M. V.
Rao
,
O. W.
Holland
,
G.
Kelner
,
P. H.
Chi
,
J.
Kretchmer
, and
M.
Ghezzo
,
J. Appl. Phys.
82
,
5327
(
1997
).
11.
N. S.
Saks
,
S.-H.
Ryu
, and
A. V.
Suvorov
,
Appl. Phys. Lett.
81
,
4958
(
2002
).
12.
M.
Lazar
,
C.
Raynaud
,
D.
Planson
,
J.-P.
Chante
,
M.-L.
Locatelli
,
L.
Ottaviani
, and
Ph.
Godignon
,
J. Appl. Phys.
94
,
2992
(
2003
).
13.
A. P.
Knights
 et al.,
J. Appl. Phys.
87
,
3973
(
2000
).
14.
K. J.
Schoen
,
J. M.
Woodall
,
J. A.
Cooper
, and
M. R.
Melloch
,
IEEE Trans. Electron Devices
45
,
1595
(
1998
).
15.
D.
Åberg
,
H.
Allen
,
P.
Pellegrino
, and
B. G.
Svensson
,
Appl. Phys. Lett.
78
,
2908
(
2001
).
16.
H.
Matsuura
,
K.
Aso
,
S.
Kagamihara
,
H.
Iwata
,
T.
Ishida
, and
K.
Nishikawa
,
Appl. Phys. Lett.
83
,
4981
(
2003
).
17.
S.
Nigam
 et al.,
Appl. Phys. Lett.
81
,
2385
(
2002
).
18.
F.
Nava
,
E.
Vittone
,
P.
Vanni
,
G.
Verzellesi
,
P. G.
Fuochi
,
C.
Lanzieri
, and
M.
Glaser
,
Nucl. Instrum. Methods Phys. Res. A
505
,
645
(
2003
).
19.
J. M.
Shannon
,
Appl. Phys. Lett.
24
,
369
(
1974
).
20.
J. M.
Shannon
,
Appl. Phys. Lett.
25
,
75
(
1974
).
21.
Y. P.
Pai
and
H. C.
Lin
,
Solid-State Electron.
24
,
929
(
1981
).
22.
S.
Ashok
,
H.
Kräutle
, and
H.
Beneking
,
Appl. Phys. Lett.
45
,
431
(
1984
).
23.
R.
Singh
and
S.
Ashok
,
Appl. Phys. Lett.
47
,
426
(
1985
).
24.
J. S.
Kim
,
H. H.
Choi
,
S. H.
Son
, and
S. Y.
Choi
,
Appl. Phys. Lett.
79
,
860
(
2001
).
25.
J.
Osvald
,
J. Appl. Phys.
90
,
6205
(
2001
).
26.
M. J.
Legodi
,
F. D.
Auret
,
S. A.
Goodman
, and
J. B.
Malherbe
,
Nucl. Instrum. Methods Phys. Res. B
148
,
441
(
1998
).
27.
F.
Roccaforte
,
C.
Bongiorno
,
F.
La Via
, and
V.
Raineri
,
Appl. Phys. Lett.
85
,
6152
(
2004
).
28.
J. R.
Waldrop
and
R. W.
Grant
,
Appl. Phys. Lett.
62
,
2685
(
1993
).
29.
D.
Defives
,
O.
Noblanc
,
C.
Dua
,
C.
Brylinski
,
M.
Barthula
,
V.
Aubry-Fortuna
, and
F.
Meyer
,
IEEE Trans. Electron Devices
46
,
449
(
1999
).
30.
D.
Defives
,
O.
Durand
,
F.
Wyezisk
,
J.
Oliver
,
O.
Noblank
, and
C.
Brylinski
,
Mater. Sci. Forum
338–342
,
411
(
2000
).
31.
F.
La Via
,
F.
Roccaforte
,
A.
Makhtari
,
V.
Raineri
,
P.
Musumeci
, and
L.
Calcagno
,
Microelectron. Eng.
60
,
269
(
2002
).
32.
J. P.
Biersack
,
Nucl. Instrum. Methods Phys. Res. B
35
,
205
(
1988
).
33.
E. H.
Rhoderick
and
R. H.
Williams
,
Metal-Semiconductor Contacts
(
Oxford Science
, Oxford,
1988
).
34.
V.
Saxena
,
J. N.
Su
, and
A. J.
Steckl
,
IEEE Trans. Electron Devices
46
,
456
(
1999
).
35.
J.
Sullivan
,
R. T.
Tung
,
M.
Pinto
, and
W. R.
Graham
,
J. Appl. Phys.
70
,
7403
(
1991
).
36.
37.
H. J.
Im
,
Y.
Ding
,
J. P.
Pelz
, and
W. J.
Choyke
,
Phys. Rev. B
64
,
075310
(
2001
).
38.
L. D.
Bell
and
W. J.
Kaiser
,
Phys. Rev. Lett.
61
,
2368
(
1988
).
39.
M. O.
Aboelfotoh
,
J. Appl. Phys.
66
,
262
(
1989
).
40.
R. F.
Egerton
,
Electron Energy-Loss Spectroscopy in the Electron Microscope
, 2nd ed. (
Plenum
, New York,
1996
).
41.
H.
Norde
,
J. Appl. Phys.
50
,
5052
(
1979
).
42.
F.
Roccaforte
,
F.
La Via
,
V.
Raineri
,
L.
Calcagno
, and
F.
Mangano
,
Appl. Phys. Lett.
83
,
4181
(
2003
).
43.
J. A.
Gardner
 et al.,
J. Appl. Phys.
83
,
5118
(
1998
).
44.
F.
Giannazzo
,
L.
Calcagno
,
V.
Raineri
,
L.
Ciampolini
,
M.
Cippa
, and
E.
Napolitani
,
Appl. Phys. Lett.
79
,
1211
(
2001
).
45.
R. T.
Tung
,
Mater. Sci. Eng., R.
35
,
1
(
2001
).
46.
P.
Blood
and
J. W.
Orton
,
The Electrical Characterization of Semiconductors: Majority Carriers and Electron States
, edited by
N. H.
March
(
Academic
, London
1992
), p.
297
.
47.
I.
Pintilie
,
L.
Pintilie
,
K.
Irmscher
, and
B.
Thomas
,
Appl. Phys. Lett.
81
,
4841
(
2002
).
48.
T.
Dalibor
,
G.
Pensl
,
H.
Matsunami
,
T.
Kimoto
,
W. J.
Chokye
,
A.
Schöner
, and
N.
Nordell
,
Phys. Status Solidi A
162
,
199
(
1997
).
49.
J. H.
Zhao
,
K.
Sheng
, and
R. C.
Lebron-Velilla
,
Int. J. High Speed Electron. Syst.
(in press).
50.
H. C.
Card
and
E. H.
Rhoderick
,
J. Phys. D
4
,
1589
(
1971
).
51.
R. T.
Tung
,
Mater. Sci. Eng., R.
35
,
1
(
2001
).
52.
C. Y.
Wu
,
J. Appl. Phys.
51
,
4919
(
1980
).
You do not currently have access to this content.