A comparative spectroscopic study is performed on Er3+(4f11) ions doped in polycrystalline ceramic garnet Y3Al5O12 (YAG) and single-crystal laser rod, both containing nominal 50 at. % of Er3+. The standard Judd–Ofelt (JO) model is applied to the room-temperature absorption intensities of Er3+(4f11) transitions in both hosts to obtain the phenomenological intensity parameters. These parameters are subsequently used to determine the radiative decay rates, radiative lifetimes, and branching ratios of the Er3+ transitions from the upper multiplet manifolds to the corresponding lower-lying multiplet manifolds LJ2S+1 of Er3+(4f11) in these garnet hosts. The emission cross sections of the intermanifold Er3+I1324I1524 (1.5 μm) transition as well as the principal inter-Stark transition Y1Z4 (1550 nm) within the corresponding multiplet manifolds have been determined. The room-temperature fluorescence lifetimes of the I1324I1524 (1.5 μm) transition in both polycrystalline ceramic and single-crystal YAG samples were measured. From the radiative lifetimes determined from the JO model and the measured fluorescence lifetimes, the quantum efficiencies for both samples were determined. The comparative study of Er3+(4f11) ions performed suggests that polycrystalline ceramic YAG is an excellent alternative to single-crystal YAG rod for certain applications.

1.
J. B.
Gruber
,
D. K.
Sardar
,
B.
Zandi
,
J. A.
Hutchinson
, and
C. W.
Trussell
,
J. Appl. Phys.
94
,
4835
(
2003
), references therein.
2.
E.
Lippert
,
G.
Rustad
, and
K.
Stenersen
,
OSA Trends in Optics and Photonics Series
,
Advanced Solid-State Photonics
(
Optical Society of America
,
Washington, D.C.
,
2003
), Vol.
83
, pp.
266
268
.
3.
Y. E.
Young
,
S. D.
Setzler
,
K. J.
Snell
,
P. A.
Budni
,
T. M.
Pollak
, and
E. P.
Chicklis
,
Opt. Lett.
29
,
1075
(
2004
).
4.
J. A.
Hutchinson
and
T. H.
Allik
,
Proc. SPIE
1627
,
2
(
1992
).
5.
J. A.
Hutchinson
and
T. H.
Allik
,
Appl. Phys. Lett.
60
,
1424
(
1992
).
6.
P.
Laporta
,
S.
Tauheo
,
S.
Longhi
, and
O.
Svelto
,
Opt. Lett.
18
,
1232
(
1993
).
7.
P.
Laporta
,
S.
De Silvestri
,
V.
Magni
, and
O.
Svelto
,
Opt. Lett.
20
,
1592
(
1991
).
8.
S.
Tauheo
,
P.
Laporta
, and
S.
Longhi
,
Opt. Lett.
20
,
889
(
1995
).
9.
P. C.
Becker
,
N. A.
Olsson
, and
J. R.
Simpson
,
Erbium-Doped Fiber Amplifiers: Fundamentals and Technology
(
Academic
, New York,
1999
).
10.
M. G.
Drexhage
,
C. T.
Moynihan
, and
M. S.
Boulos
,
Mater. Res. Bull.
15
,
213
(
1980
).
11.
S.
Jiang
,
M.
Myers
, and
N.
Peyghambarian
,
J. Non-Cryst. Solids
239
,
143
(
1998
).
12.
B. C.
Hwang
,
B.
Lo
, and
C. M.
Stain
,
J. Opt. Soc. Am. B
17
,
833
(
2000
).
13.
A. M.
Tkachuk
,
Proc. SPIE
2706
,
2
(
1996
).
14.
R. T.
Brundage
and
W. M.
Yen
,
Phys. Rev. B
34
,
8810
(
1986
).
15.
W.
Koechner
,
Solid State Laser Engineering
(
Springer
, New York,
1996
).
16.
T. S.
Rutherford
,
W. M.
Tulloch
,
E. K.
Gustafson
, and
R. L.
Byer
,
IEEE J. Quantum Electron.
36
,
205
(
2000
).
17.
J. B.
Gruber
,
A.
Kennedy
,
B.
Zandi
, and
J. A.
Hutchinson
,
Proc. SPIE
3928
,
142
(
2000
).
18.
R. M.
Ranin
,
Erbium-Doped Fiber Lasers
(
Springer
, New York,
1997
).
19.
W. F.
Krupke
and
L. L.
Chase
,
Opt. Quantum Electron.
22
,
S
1
(
1990
).
20.
S. A.
Pollack
and
D. B.
Chang
,
J. Appl. Phys.
64
,
2885
(
1988
).
21.
J. A.
Hutchinson
and
T. H.
Allik
,
Appl. Phys. Lett.
60
,
1424
(
1992
).
22.
G. J.
Kintz
,
R.
Allen
, and
L.
Esterowitz
,
Appl. Phys. Lett.
54
,
681
(
1989
).
23.
J. B.
Gruber
, et al.,
Phys. Rev. B
48
,
15561
(
1993
).
24.
M.
Sekita
,
H.
Haneda
, and
S.
Shirasaki
,
J. Appl. Phys.
69
,
3709
(
1991
).
25.
26.
G. S.
Ofelt
,
J. Chem. Phys.
37
,
511
(
1962
).
27.
G. J.
Quarles
, VLOC, 7826 Photonics Drive, New Port Richey, FL 34655.
28.
Prospectus, Baikowski International Corporation, Charlotte, NC.
29.
W. F.
Krupke
and
J. B.
Gruber
,
Phys. Rev.
139
,
A2008
(
1965
).
30.
W. F.
Krupke
,
IEEE J. Quantum Electron.
10
,
450
(
1974
);
W. F.
Krupke
,
IEEE J. Quantum Electron.
7
,
153
(
1971
);
31.
M. J.
Weber
,
J. Chem. Phys.
48
,
4771
(
1968
);
32.
D. K.
Sardar
,
F.
Castano
,
J. A.
French
,
J. B.
Gruber
,
T. A.
Reynolds
,
T.
Alekel
,
D. A.
Keszler
, and
B. L.
Clark
,
J. Appl. Phys.
90
,
4997
(
2001
).
33.
J. R.
Ryan
and
R.
Beach
,
J. Opt. Soc. Am. B
9
,
1883
(
1992
).
34.
D. K.
Sardar
and
F.
Castano
,
J. Appl. Phys.
91
,
911
(
2002
).
35.
J. A.
Caird
and
L. G.
DeShazer
,
IEEE J. Quantum Electron.
11
,
97
(
1975
).
36.
T. S.
Lomheim
and
L. G.
DeShazer
,
J. Appl. Phys.
49
,
5517
(
1978
).
37.
A. A.
Kaminskii
,
Crystalline Lasers: Physical Process and Operating Schemes
(
CRC Boca Raton
, FL,
1996
).
38.
D. K.
Sardar
,
W. M.
Bradley
,
J. J.
Perez
,
J. B.
Gruber
,
B.
Zandi
,
J. A.
Hutchinson
, and
C. W.
Trussell
,
J. Appl. Phys.
93
,
2602
(
2003
).
39.
H.
Stange
,
K.
Petermann
,
G.
Huber
, and
E. W.
Duczynski
,
Appl. Phys. B: Photophys. Laser Chem.
B49
,
269
(
1989
).
40.
I.
Sokolska
,
Appl. Phys. B
71
,
157
(
2000
).
41.
J. B.
Gruber
,
A.
Nijjar
,
D. K.
Sardar
,
R. M.
Yow
,
C. C.
Russell
,
T. H.
Allik
, and
B.
Zandi
,
J. Appl. Phys.
97
,
063519
(
2005
.
42.
W. F.
Krupke
,
M. D.
Shinn
,
J. E.
Marion
,
J. A.
Caird
, and
S. E.
Stokowski
,
J. Opt. Soc. Am. B
3
,
102
(
1986
).
43.
A. A.
Kaminskii
,
Laser Crystals
(
Springer
, Berlin,
1981
).
You do not currently have access to this content.