A device physics model has been developed for radial p-n junction nanorod solar cells, in which densely packed nanorods, each having a p-n junction in the radial direction, are oriented with the rod axis parallel to the incident light direction. High-aspect-ratio (length/diameter) nanorods allow the use of a sufficient thickness of material to obtain good optical absorption while simultaneously providing short collection lengths for excited carriers in a direction normal to the light absorption. The short collection lengths facilitate the efficient collection of photogenerated carriers in materials with low minority-carrier diffusion lengths. The modeling indicates that the design of the radial p-n junction nanorod device should provide large improvements in efficiency relative to a conventional planar geometry p-n junction solar cell, provided that two conditions are satisfied: (1) In a planar solar cell made from the same absorber material, the diffusion length of minority carriers must be too low to allow for extraction of most of the light-generated carriers in the absorber thickness needed to obtain full light absorption. (2) The rate of carrier recombination in the depletion region must not be too large (for silicon this means that the carrier lifetimes in the depletion region must be longer than 10ns). If only condition (1) is satisfied, the modeling indicates that the radial cell design will offer only modest improvements in efficiency relative to a conventional planar cell design. Application to Si and GaAs nanorod solar cells is also discussed in detail.

1.
V.
Schlosser
,
IEEE Trans. Electron Devices
31
,
610
(
1984
).
2.
M.
Imaizumi
,
T.
Ito
,
M.
Yamaguchi
, and
K.
Kaneko
,
J. Appl. Phys.
81
,
7635
(
1997
).
3.
J.
Goldberger
,
R. R.
He
,
Y. F.
Zhang
,
S. W.
Lee
,
H. Q.
Yan
,
H. J.
Choi
, and
P. D.
Yang
,
Nature (London)
422
,
599
(
2003
).
4.
L. J.
Lauhon
,
M. S.
Gudiksen
,
D.
Wang
, and
C. M.
Lieber
,
Nature (London)
420
,
57
(
2002
).
5.
K.
Haraguchi
,
T.
Katsuyama
,
K.
Hiruma
, and
K.
Ogawa
,
Appl. Phys. Lett.
60
,
745
(
1992
).
6.
Y. Y.
Wu
,
R.
Fan
, and
P. D.
Yang
,
Nano Lett.
2
,
83
(
2002
).
7.
M. T.
Bjork
 et al.,
Nano Lett.
2
,
87
(
2002
).
8.
M. S.
Gudiksen
,
L. J.
Lauhon
,
J.
Wang
,
D. C.
Smith
, and
C. M.
Lieber
,
Nature (London)
415
,
617
(
2002
).
9.
M. A.
Green
and
S. R.
Wenham
,
Appl. Phys. Lett.
65
,
2907
(
1994
).
10.
K. J.
Weber
,
A. W.
Blakers
,
M. J.
Stocks
,
J. H.
Babaei
,
V. A.
Everett
,
A. J.
Neuendorf
, and
P. J.
Verlinden
,
IEEE Electron Device Lett.
25
,
37
(
2004
).
11.
K.
Taretto
and
U.
Rau
,
Prog. Photovoltaics
12
,
573
(
2004
).
12.
B.
Kannan
,
K.
Castelino
, and
A.
Majumdar
,
Nano Lett.
3
,
1729
(
2003
).
13.
See  Appendix.
Also see, for example,
A.
Fahrenbruch
and
R.
Bube
,
Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion
(
Academic
, Stanford,
1983
);
or
S. J.
Fonash
,
Solar Cell Device Physics
(
Academic
, New York,
1981
).
14.
A.
Fahrenbruch
and
R.
Bube
,
Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion
(
Academic
, Stanford,
1983
).
15.
W.
Shockley
and
W. T.
Read
,
Phys. Rev.
87
,
835
(
1952
).
17.
C. T.
Sah
,
R. N.
Noyce
, and
W.
Shockley
,
Proc. IRE
45
,
1228
(
1957
).
18.

In practice, this is not strictly true; it reflects the fact that the model only considers minority carrier transport. In particular, majority-carrier recombination is neglected. In reality, majority carriers will recombine also. However, the length scale associated with majority-carrier recombination will be much longer than for minority carriers, and thus, to a good approximation, majority-carrier recombination may be neglected.

19.
Air Mass 1.5 Global Spectrum, UNSW Key Center for Photovoltaic Engineering, http://www.pv.unsw.edu.au/am1.5.html. This website is now defunct - for the AM 1.5 spectrum please see http://rredc.nrel.gov/solar/
20.
n,k data from
Handbook of Optical Constants of Solids
, edited by
E. D.
Palik
(
Academic
, Orlando,
1998
).
21.
R. F.
Pierret
,
Advanced Semiconductor Fundamentals
, 2nd ed. (
Prentice-Hall
, Englewood Cliffs, NJ,
2003
), pp.
148
149
and
154
.
22.
R. F.
Pierret
,
Semiconductor Fundamentals
, 2nd ed. (
Addison-Wesley
, Reading, MA,
1988
), p.
99
.
24.
Use was made of information from the website of the Ioffe Physico-Technical Institute, “Electronic archive: New Semiconductor Materials. Characteristics and Properties,” http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/electric.html
25.
A semiconductor is termed “degenerate” if EcEf<3kT, or if EfEv<3kT. This occurs in silicon for dopings above 1×1018cm3. See
R. F.
Pierret
, in Ref. 21, pp.
115
and
.
26.
The onset of Auger recombination can be estimated by the change in slope in a plot of lifetime vs dopant density. For silicon this occurs at dopant densities of 5×1018cm3. See http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/Figs/1323.gif
27.
Again, use was made of information from the website of the Ioffe Physico-Technical Institute, http://www.ioffe.rssi.ru/SVA/NSM/Semicond/GaAs/electric.html
28.
GaAs becomes degenerate for dopings above 1×1017cm3. See Ref. 25 above.
29.
Auger recombination begins to dominate in GaAs at doping levels above 1×1019cm3.
See
R. K.
Ahrenkiel
,
R.
Ellingson
,
W.
Metzger
,
D. I.
Lubyshev
, and
W. K.
Liu
,
Appl. Phys. Lett.
78
,
1879
(
2001
).
30.

This is simply because there are not enough dopant ions to create the voltage drop required.

You do not currently have access to this content.