Intersubband optical transitions at short wavelengths in strain-compensated In0.70Ga0.30AsAlAs double quantum wells are investigated by means of mid-infrared absorption. Trade-offs between achieving a high transition energy and a large oscillator strength of the two highest-energy intersubband transitions using our strain-compensation approach are analyzed as a function of the widths of the two wells. Two design strategies leading to relatively strong intersubband optical transitions at 800 meV, 1.55μm, are described and the corresponding structures grown using gas-source molecular-beam epitaxy on (001)InP are investigated. The strongest intersubband transitions obtained experimentally are generally between 300 and 600 meV, 24μm. Significant oscillator strength, however, also extends out to 800 meV, 1.55μm.

1.
R.
Paiella
,
F.
Capasso
,
C.
Gmachl
,
C. G.
Bethea
,
D. L.
Sivco
,
J. N.
Baillargeon
,
A. L.
Hutchinson
, and
A. Y.
Cho
,
Appl. Phys. Lett.
75
,
2536
(
1999
).
2.
R.
Paiella
 et al,
Appl. Phys. Lett.
79
,
2526
(
2001
).
3.
S. R.
Schmidt
,
A.
Seilmeier
, and
H. C.
Liu
,
J. Appl. Phys.
91
,
5545
(
2002
).
4.
S.
Ehret
,
H.
Schneider
,
J.
Fleissner
,
P.
Koidl
, and
G.
Böhm
,
Appl. Phys. Lett.
71
,
641
(
1997
).
5.
H.
Schneider
,
C.
Schönbein
,
G.
Bihlmann
,
P.
van Son
, and
H.
Sigg
,
Appl. Phys. Lett.
70
,
1602
(
1997
).
6.
T.
Akiyama
,
N.
Georgiev
,
T.
Mozume
,
H.
Yoshida
,
A. V.
Gopal
, and
O.
Wada
,
IEEE Photonics Technol. Lett.
14
,
495
(
2002
).
7.
R.
Akimoto
,
Y.
Kinpara
,
K.
Akita
,
F.
Sasaki
, and
S.
Kobayashi
Appl. Phys. Lett.
78
,
580
(
2001
).
8.
R.
Akimoto
,
K.
Akita
,
F.
Sasaki
, and
T.
Hasama
Appl. Phys. Lett.
81
,
2998
(
2002
).
9.
C.
Gmachl
,
H. M.
Ng
,
S.-N.
George Chu
, and
A. Y.
Cho
,
Appl. Phys. Lett.
77
,
3722
(
2000
).
10.
J. D.
Heber
,
C.
Gmachl
,
H. M.
Ng
, and
A. Y.
Cho
,
Appl. Phys. Lett.
81
,
1237
(
2002
).
11.
A.
Neogi
,
T.
Mozume
,
H.
Yoshida
, and
O.
Wada
,
IEEE Photonics Technol. Lett.
11
,
632
(
1999
).
12.
A.
Guzman
,
J.
Miguel-Sanchez
,
E.
Luna
, and
E.
Munoz
,
Proc. SPIE
5502
,
414
(
2004
).
13.
K. T.
Lai
,
M.
Missous
,
R.
Gupta
, and
S. K.
Haywood
,
J. Appl. Phys.
93
,
6063
(
2003
).
14.
N.
Georgiev
,
T.
Dekorsy
,
F.
Eichhorn
,
M.
Helm
,
M. P.
Semtsiv
, and
W. T.
Masselink
,
Appl. Phys. Lett.
83
,
210
(
2003
), and references therein.
15.
M. P.
Semtsiv
,
M.
Ziegler
,
S.
Dressler
,
W. T.
Masselink
,
N.
Georgiev
,
T.
Dekorsy
, and
M.
Helm
,
Appl. Phys. Lett.
85
,
1478
(
2004
).
16.
M.
Missous
,
C.
Mitchell
,
J.
Sly
,
K. T.
Lai
,
R.
Gupta
, and
S. K.
Haywood
,
Physica E (Amsterdam)
20
,
496
(
2004
).
17.
Y.
Hirayama
,
J. H.
Smet
,
L. H.
Peng
,
C. G.
Fonstad
, and
E. P.
Ippen
,
Appl. Phys. Lett.
63
,
1663
(
1993
).
18.
J. H.
Smet
,
L. H.
Peng
,
Y.
Hirayama
, and
C. G.
Fonstad
,
Appl. Phys. Lett.
64
,
986
(
1994
).
19.
M.
Helm
,
Semicond. Sci. Technol.
10
,
557
(
1995
).
20.

The oscillator strength is calculated using expression f1,2=2Ei,j2Ψi(z)me(z)zψj(z)dz2, where me(z) is an electron effective mass taken to be meInGaAs=0.035×m0 for In0.70Ga0.30As, meAlAs=0.115×m0 for AlAs, and meInAlAs=0.075×m0 for In0.55Al0.45As. ψi(z) and ψj(z) are the envelope wave functions in z direction of states i and j correspondently. Ei,j is the energy spacing of states i and j.

21.
U.
Ekenberg
,
Phys. Rev. B
36
,
6152
(
1987
).
You do not currently have access to this content.