In this article we study the interstitial injection during oxidation of very low-energy nitrogen-implanted silicon. Buried boron δ layers are used to monitor the interstitial supersaturation during the oxidation of nitrogen-implanted silicon. No difference in boron diffusivity enhancement was observed compared to dry oxidation of nonimplanted samples. This result is different from our experience from N2O oxynitridation study, during which a boron diffusivity enhancement of the order of 20% was observed, revealing the influence of interfacial nitrogen on interstitial kinetics. A possible explanation may be that implanted nitrogen acts as an excess interstitial sink in order to diffuse towards the surface via a non-Fickian mechanism. This work completes a wide study of oxidation of very low-energy nitrogen-implanted silicon related phenomena we performed within the last two years [D. Skarlatos, C. Tsamis, and D. Tsoukalas, J. Appl. Phys.93, 1832 (2003); D. Skarlatos, E. Kapetanakis, P. Normand, C. Tsamis, M. Perego, S. Ferrari, M. Fanciulli, and D. Tsoukalas, J. Appl. Phys.96, 300 (2004)].

1.
E. P.
Gusev
,
H.-C.
Lu
,
E. L.
Garfunkel
,
T.
Gustafsson
, and
M. L.
Green
,
IBM J. Res. Dev.
43
,
265
(
1999
).
2.
G. D.
Wilk
,
R. M.
Wallace
, and
J. M.
Anthony
,
J. Appl. Phys.
89
,
5243
(
2001
).
3.
W.
Yang
 et al.,
Electron. Lett.
39
,
421
(
2003
).
4.
V.
Ioannou-Sougleridis
,
G.
Vellianitis
, and
A.
Dimulas
,
J. Appl. Phys.
93
,
3982
(
2003
).
5.
V. P.
Gopinath
,
A.
Kamath
,
M.
Mirabedini
,
V.
Hornback
,
Y.
Le
,
A.
Badowski
, and
W.-C.
Yeh
,
IEEE Electron Device Lett.
24
,
66
(
2003
).
6.
S. K.
Samanta
,
S.
Chatterjiee
,
S.
Maikap
, and
C. K.
Maiti
,
Solid-State Electron.
48
,
91
(
2004
).
7.
H. R.
Soleimani
,
B. S.
Doyle
, and
A.
Philipossian
,
J. Electrochem. Soc.
142
,
L132
(
1995
).
8.
J-P.
Carrere
,
A.
Grouillet
,
F.
Guylader
,
A.
Beverina
,
M.
Bidaud
, and
A.
Halimaoui
,
ESSDERC
,
2002
(unpublished), p.
155
.
9.
H. C.
Lee
and
D. L.
Kwong
,
Semicond. Sci. Technol.
18
,
88
(
2003
).
10.
I.-H.
Nam
 et al.,
IEEE Trans. Electron Devices
48
,
2310
(
2001
).
11.
D.
Skarlatos
,
C.
Tsamis
, and
D.
Tsoukalas
,
J. Appl. Phys.
93
,
1832
(
2003
).
12.
D.
Skarlatos
,
E.
Kapetanakis
,
P.
Normand
,
C.
Tsamis
,
M.
Perego
,
S.
Ferrari
,
M.
Fanciulli
, and
D.
Tsoukalas
,
J. Appl. Phys.
96
,
300
(
2004
).
13.
S. M.
Hu
,
J. Appl. Phys.
45
,
1567
(
1974
).
14.
P. M.
Fahey
,
P. B.
Griffin
, and
J. D.
Plummer
,
Rev. Mod. Phys.
61
,
289
(
1989
).
15.
C.
Tsamis
,
D. N.
Kouvatsos
, and
D.
Tsoukalas
,
Appl. Phys. Lett.
69
,
2725
(
1996
).
16.
D.
Skarlatos
,
D.
Tsoukalas
,
L. F.
Giles
, and
A.
Claverie
,
J. Appl. Phys.
87
,
1103
(
2000
).
17.
S. C.
Jain
,
W.
Schoenmaker
,
R.
Linsday
,
P. A.
Stolk
,
S.
Decoutere
,
M.
Willander
, and
H. E.
Maes
,
J. Appl. Phys.
91
,
8919
(
2002
).
18.
C.
Murthy
,
K.
Lee
,
R.
Rengarajan
,
O.
Documaci
,
P.
Ronsheim
,
H.
Tews
, and
S.
Inaba
,
Appl. Phys. Lett.
80
,
2696
(
2002
).
19.
A.
Claverie
,
B.
Colombeau
,
B.
de Mauduit
,
C.
Bonafos
,
X.
Hebras
,
G. Ben
Assayag
, and
F.
Cristiano
,
Appl. Phys. A
76
,
1025
(
2003
).
20.
C.
Tsamis
and
D.
Tsoukalas
, in
NATO Advanced Research Workshop on Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices: Towards an Atomic-Scale Understanding
,
NATO ASI Series
, edited by
E.
Garfunkel
 et al. (
Kluwer Academic
, Dordrecht
1998
), p.
359
.
21.
L. S.
Adam
,
M. E.
Law
,
S.
Hegde
, and
O.
Documaci
,
IEDM 2001
(unpublished), p.
847
.
22.
A.
Kamgar
,
H-H.
Vuong
,
C. T.
Liu
,
C. S.
Rafferty
, and
J. T.
Clemens
,
Tech. Dig. - Int. Electron Devices Meet.
1997
,
695
.
You do not currently have access to this content.