Laser shock peening (LSP) is emerging as a competitive alternative technology to classical treatments to improve fatigue and corrosion properties of metals for a variety of important applications. LSP under a water confinement regime (WCR) can produce plasma pressures on the target surface four times higher and two to three times longer than those under direct regime configurations. However, most of the published thermal models for LSP under WCR are not self-closed, and have free variables which have to come from experimental measurements under the same conditions. In this paper, a self-closed thermal model for LSP under WCR configurations is presented. This model has considered most of the relevant physical processes for laser ablation and plasma formation and expansion, and there are no free variables in the model. The simulation results for pressures from the model are compared with the available experimental results in literature under a variety of laser-pulse conditions, and good agreements are found.

1.
S. M.
Charles
,
W.
Tao
,
T.
Lin
,
C.
Graham
, and
Y. W.
Mai
,
Int. J. Fatigue
24
,
1021
(
2002
).
2.
A.
Sollier
,
L.
Berthe
,
P.
Peyre
,
E.
Bartnicki
, and
R.
Fabbro
,
Proc. SPIE
4831
,
463
(
2003
).
3.
J. D.
Colvin
,
E. R.
Ault
,
W. E.
King
, and
I. H.
Zimmerman
,
Phys. Plasmas
10
,
2940
(
2003
).
4.
B. P.
Fairand
and
A. H.
Clauer
,
J. Appl. Phys.
50
,
1497
(
1979
).
5.
R.
Fabbro
,
J.
Fournier
,
P.
Ballard
,
D.
Devaux
, and
J.
Virmont
,
J. Appl. Phys.
68
,
775
(
1990
).
6.
W.
Zhang
,
Y. L.
Yao
, and
I. C.
Noyan
,
J. Manuf. Sci. Eng.
126
,
10
(
2004
).
7.
R. J.
Harrach
, UCRL-52389, Lawrence Livermore Laboratory,
1
(
1977
).
8.
X.
Mao
and
R. E.
Russo
,
Appl. Phys. A: Mater. Sci. Process.
A64
,
1
(
1996
).
9.
F. F.
Chen
,
Introduction to Plasma Physics and Controlled Fusion
(
Plenum
, New York,
1984
).
10.
W. R.
Pyle
,
M. H.
Hayes
, and
A. L.
Spivak
, IECEC Report No. 96535,
1996
.
11.
J. C.
Carls
,
Y.
Seo
, and
J. R.
Brock
,
J. Opt. Soc. Am. B
8
,
329
(
1990
).
12.
F. L.
Pedrotti
and
L. S.
Pedrotti
,
Introduction to Optics
(
Prentice Hall
, Englewood Cliffs, N.J.,
1993
).
13.
L.
Spitzer
,
Physics of Fully Ionized Gases
(
Interscience
, New York,
1962
).
14.
W.
Rozmus
and
A. A.
Offenberger
,
Phys. Rev. A
31
,
1177
(
1985
).
15.
D. J.
Bond
,
J. Phys. D
14
,
L43
(
1981
).
16.
R. C.
Malone
,
R. L.
McCrory
, and
R. L.
Morse
,
Phys. Rev. Lett.
34
,
721
(
1975
).
17.
Y. B.
Zel’dovich
and
P. R.
Raizer
,
Physics of Shock Waves and High-temperature Hydrodynamic Phenomena
(
Academic
, New York,
1966
).
18.
K. H.
Song
and
X.
Xu
,
Appl. Phys. A: Mater. Sci. Process.
65
,
477
(
1997
).
19.
S. H.
Jeong
,
R.
Greif
, and
R. E.
Russo
,
Proceedings of the ASME Heat Transfer division
, Dallas, Texas, No. 16–21, ed. by
R. L.
Mahajan
and
U.
Chandra
, ASME HTD-Vol.
351
,
63
(
1997
).
20.
F. P.
Incropera
and
D. P.
DeWitt
,
Introduction to Heat Transfer
(
Wiley
, New York,
2002
).
21.
L.
Berthe
,
R.
Fabrro
,
P.
Peyre
,
L.
Tollier
, and
E.
Bartnicki
,
J. Appl. Phys.
82
,
2826
(
1997
).
22.
Q.
Lu
,
S. H.
Jeong
,
R.
Greif
, and
R. E.
Russo
,
Appl. Phys. Lett.
80
,
3072
(
2002
).
23.
See Special Issue on Micro/Nanoscale Heat Transfer [
X.
Xu
and
D. A.
Willis
,
J. Heat Transfer
124
,
293
(
2002
)].
24.
L.
Berthe
,
R.
Fabbro
,
P.
Peyre
, and
E.
Bartnicki
,
J. Appl. Phys.
85
,
7552
(
1999
).
25.
P.
Peyre
,
L.
Berthe
,
R.
Fabbro
, and
A.
Sollier
,
J. Phys. D
33
,
498
(
2000
).
26.
D.
Devaux
,
R.
Fabbro
,
L.
Tollier
, and
E.
Bartnicki
,
J. Appl. Phys.
74
,
2268
(
1993
).
27.
K.
Saito
,
K.
Takatani
,
T.
Sakka
, and
Y. H.
Ogata
,
Appl. Surf. Sci.
197–198
,
56
(
2002
).
28.
T.
Sakka
,
S.
Iwanaga
, and
Y. H.
Ogata
,
J. Chem. Phys.
112
,
8645
(
2000
).
You do not currently have access to this content.