The SrTiO3Si interface was investigated by transmission electron microscopy for SrTiO3 films grown on (001) Si by molecular-beam epitaxy with different native oxide (SiO2) removal treatments, and SrTi flux ratios. The interface and film microstructure were independent of the process used to remove the native oxide, but the interface reactivity was dependent on the SrTi flux ratio. A low SrTi flux ratio (0.8) resulted not only in a layer of amorphous material at the film∕substrate interface but also in the formation of crystalline C49TiSi2 precipitates at that interface. These results are consistent with thermodynamic expectations in which it is paramount to maintain separation between TiO2 and the underlying silicon.

1.
S. R.
Summerfelt
, in
Thin Film Ferroelectric Materials and Devices
, edited by
R.
Ramesh
(
Kluwer
, Boston, MA,
1997
), pp.
1
42
.
2.
R. A.
McKee
,
F. J.
Walker
, and
M. F.
Chisholm
,
Phys. Rev. Lett.
81
,
3014
(
1998
).
3.
K.
Eisenbeiser
 et al,
Appl. Phys. Lett.
76
,
1324
(
2000
).
4.
Z.
Yu
 et al,
J. Vac. Sci. Technol. B
18
,
2139
(
2000
).
5.
R. A.
McKee
,
F. J.
Walker
, and
M. F.
Chisholm
,
Science
293
,
468
(
2001
).
6.
S.
Jeon
,
F. J.
Walker
,
C. A.
Billman
,
R. A.
McKee
, and
H.
Hwang
,
IEEE Electron Device Lett.
24
,
218
(
2003
).
7.
F. J.
Walker
and
R. A.
McKee
, in
High Dielectric Constant Materials: VLSI MOSFET Applications
, edited by
H. R.
Huff
and
D. C.
Gilmer
(
Springer
, Berlin,
2005
), pp.
607
637
.
8.
J.
Robertson
and
C. W.
Chen
,
Appl. Phys. Lett.
74
,
1168
(
1999
).
9.
P. W.
Peacock
and
J.
Robertson
,
Appl. Phys. Lett.
83
,
5497
(
2003
).
10.
S. A.
Chambers
,
Y.
Liang
,
Z.
Yu
,
R.
Droopad
,
J.
Ramdani
, and
K.
Eisenbeiser
,
Appl. Phys. Lett.
77
,
1662
(
2000
).
11.
S. A.
Chambers
,
Y.
Liang
,
Z.
Yu
,
R.
Droopad
, and
J.
Ramdani
,
J. Vac. Sci. Technol. A
19
,
934
(
2001
).
12.
X.
Zhang
,
A. A.
Demkov
,
H.
Li
,
X.
Hu
,
Y.
Wei
, and
J.
Kulik
,
Phys. Rev. B
68
,
125323
(
2003
).
13.
K. J.
Hubbard
and
D. G.
Schlom
,
J. Mater. Res.
11
,
2757
(
1996
).
14.
D. G.
Schlom
and
J. H.
Haeni
,
MRS Bull.
27
,
198
(
2002
).
15.
J. Q.
He
 et al,
J. Appl. Phys.
92
,
7200
(
2002
).
16.
The National Technology Roadmap for Semiconductors
(
Semiconductor Industry Association
, San Jose, CA,
1997
), p.
72
.
17.
G. D.
Wilk
,
R. M.
Wallace
, and
J. M.
Anthony
,
J. Appl. Phys.
89
,
5243
(
2001
).
18.
J.
Lettieri
, Ph.D. thesis,
Pennsylvania State University
,
2002
;
19.
H.
Li
 et al,
J. Appl. Phys.
93
,
4521
(
2003
).
20.
H.
Mori
and
H.
Ishiwara
,
Jpn. J. Appl. Phys., Part 2
30
,
L1415
(
1991
).
21.
B. K.
Moon
and
H.
Ishiwara
,
Jpn. J. Appl. Phys., Part 1
33
,
1472
(
1994
).
22.
T.
Tambo
,
T.
Nakamura
,
K.
Maeda
,
H.
Ueba
, and
C.
Tatsuyama
,
Jpn. J. Appl. Phys., Part 1
37
,
4454
(
1998
).
23.
T.
Tambo
,
K.
Maeda
,
A.
Shimizu
, and
C.
Tatsuyama
,
J. Appl. Phys.
86
,
3213
(
1999
).
24.
Y.
Liang
,
S.
Gan
, and
M.
Engelhard
,
Appl. Phys. Lett.
79
,
3591
(
2001
).
25.
G. Y.
Yang
 et al,
J. Mater. Res.
17
,
204
(
2002
).
26.
X.
Hu
 et al,
Appl. Phys. Lett.
82
,
203
(
2003
).
27.
V.
Vaithyanathan
,
J.
Lettieri
,
J.
Haeni
,
J.
Schubert
,
L.
Edge
,
W.
Tian
, and
D. G.
Schlom
(unpublished).
28.
D. B.
Fenner
,
A. M.
Viano
,
D. K.
Fork
,
G. A. N.
Connell
,
J. B.
Boyce
,
F. A.
Ponce
, and
J. C.
Tramontana
,
J. Appl. Phys.
69
,
2176
(
1991
).
29.
C. A.
Nordman
 et al,
J. Appl. Phys.
70
,
5697
(
1991
).
30.
J. A.
Alarco
,
G.
Brorsson
,
Z. G.
Ivanov
,
P.-Å.
Nilsson
,
E.
Olsson
, and
M.
Löfgren
,
Appl. Phys. Lett.
61
,
723
(
1992
).
31.
G. L.
Skofronick
,
A. H.
Carim
,
S. R.
Foltyn
, and
R. E.
Muenchausen
,
J. Mater. Res.
8
,
2785
(
1993
).
32.
D. G.
Schlom
,
E. S.
Hellman
,
E. H.
Hartford
, Jr.
,
C. B.
Eom
,
J. C.
Clark
, and
J.
Mannhart
,
J. Mater. Res.
11
,
1336
(
1996
).
33.
J.
Lettieri
,
J. H.
Haeni
, and
D. G.
Schlom
,
J. Vac. Sci. Technol. A
20
,
1332
(
2002
).
34.
C. D.
Theis
and
D. G.
Schlom
,
J. Vac. Sci. Technol. A
14
,
2677
(
1996
).
35.
Y.
Wei
 et al,
J. Vac. Sci. Technol. B
20
,
1402
(
2002
).
36.

One ML is defined as the concentration of atoms on the (001) surface of silicon, i.e., 6.78×1014at.cm2.

37.

The Burgers vector is a2[110] with respect to the silicon substrate, where a is the lattice constant of the silicon.

38.
H.
Inut
,
T.
Hashimoto
,
K.
Tanaka
,
I.
Tanaka
,
T.
Mizoguchi
,
H.
Adachi
, and
M.
Yamaguchi
,
Acta Mater.
49
,
83
(
2001
).
39.
F. J.
Himpsel
,
J. E.
Ortega
,
G. J.
Mankey
, and
R. F.
Willis
,
Adv. Phys.
47
,
511
(
1998
).
40.
A. S.
Yapsir
,
C. H.
Choi
, and
T. M.
Lu
,
J. Appl. Phys.
67
,
796
(
1990
).
41.
D. G.
Schlom
,
C. A.
Billman
,
J. H.
Haeni
,
J.
Lettieri
,
P. H.
Tan
,
R. R. M.
Held
,
S.
Völk
, and
K. J.
Hubbard
(unpublished).
42.
I.
Barin
and
O.
Knacke
,
Thermochemical Properties of Inorganic Substances
(
Springer
, Berlin,
1973
).
43.
I.
Barin
,
O.
Knacke
, and
O.
Kubaschewski
,
Thermochemical Properties of Inorganic Substances, Supplement
(
Springer
, Berlin,
1977
).
44.
J. H.
Weaver
, in
Electronic Materials: A New Era of Materials Science
,
Springer Series in Solid-State Science Vol. 95
, edited by
J. R.
Chelikowski
and
A.
Franciosi
(
Springer
, Berlin,
1991
), Chap. 8.
45.
H.
Ota
,
S.
Migita
,
S.-B.
Xiong
,
H.
Fujino
,
Y.
Kasai
, and
S.
Sakai
,
Jpn. J. Appl. Phys., Part 2
38
,
L1535
(
1999
).
You do not currently have access to this content.