The use of focused ion-beam (FIB) nanopatterning for manipulating self-assembled ZnO nanodots is described. Highly aligned ZnO-nanodot arrays with various periodicities (e.g., 750, 190, and 100 nm) on FIB-nanopatterned SiO2Si substrates were prepared by metal-organic chemical-vapor deposition (MOCVD). The artificially assembled ZnO nanodots had an amorphous structure. Ga atoms incorporated into the surface areas of FIB-patterned nanoholes during FIB engraving were found to play an important role in the artificial control of ZnO, resulting in the production of ZnO nanodots on the FIB-nanopatterned areas. The nanodots evolved into single-crystalline dot clusters and rods with increasing MOCVD-growth time. In addition, microphotoluminescence measurements showed that the ZnO-nanodot arrays have low-dimensional quantum characteristics.

1.
S.-W.
Kim
,
Sz.
Fujita
, and
Sg.
Fujita
,
Appl. Phys. Lett.
81
,
5036
(
2002
).
2.
M. H.
Huang
 et al.,
Science
292
,
1897
(
2001
).
3.
W. I.
Park
,
D. H.
Kim
,
S.-W.
Jung
, and
G.-C.
Yi
,
Appl. Phys. Lett.
80
,
4232
(
2002
).
4.
Z. W.
Pan
,
Z. R.
Dai
, and
Z. L.
Wang
,
Science
291
,
1947
(
2001
).
5.
J. J.
Wu
,
S. C.
Liu
,
C. T.
Wu
,
K. H.
Chen
, and
L. C.
Chen
,
Appl. Phys. Lett.
81
,
1312
(
2002
).
6.
K.
Hummer
,
Phys. Status Solidi B
56
,
249
(
1973
).
7.
S.-W.
Kim
,
T.
Kotani
,
M.
Ueda
,
Sz.
Fujita
, and
Sg.
Fujita
,
Appl. Phys. Lett.
83
,
3593
(
2003
).
8.
X. D.
Wang
,
C. J.
Summers
, and
Z. L.
Wang
,
Nano Lett.
4
,
423
(
2004
).
9.
S.-W.
Kim
,
M.
Ueda
,
T.
Kotani
,
Sz.
Fujita
, and
Sg.
Fujita
,
Jpn. J. Appl. Phys., Part 2
42
,
L568
(
2003
).
10.
T.
Aign
 et al.,
Phys. Rev. Lett.
81
,
5656
(
1998
).
11.
M. M.
Alkaisi
,
R. J.
Blaikie
,
S. J.
McNab
,
R.
Cheung
, and
D. R.S.
Cumming
,
Appl. Phys. Lett.
75
,
3560
(
1999
).
12.
A.
Kumar
,
H. A.
Biebuyck
, and
G. M.
Whitesides
,
Langmuir
10
,
1498
(
1994
).
13.
M.
Ueda
,
S.-W.
Kim
,
Sz.
Fujita
, and
Sg.
Fujita
,
Jpn. J. Appl. Phys., Part 2
43
,
L652
(
2004
).
14.
S.-W.
Kim
,
Sz.
Fujita
, and
Sg.
Fujita
,
Jpn. J. Appl. Phys., Part 2
41
,
L543
(
2002
).
15.
G.
Benassayag
,
C.
Vieu
,
J.
Gierak
,
P.
Sudraud
, and
A.
Corbin
,
J. Vac. Sci. Technol. B
11
,
2420
(
1993
).
16.
X.
Wang
,
Y.
Ding
,
C. J.
Summers
, and
Z. L.
Wang
,
J. Phys. Chem. B
108
,
8773
(
2004
).
17.
Y.
Li
,
W.
Kim
,
Y.
Zhang
,
M.
Rolandi
,
D.
Wang
, and
H.
Dai
,
J. Phys. Chem. B
105
,
11424
(
2001
).
18.
B. D.
Yao
,
Y. F.
Chan
, and
N.
Wang
,
Appl. Phys. Lett.
81
,
757
(
2002
).
19.
J.
Zhong
,
S.
Muthukumar
,
Y.
Chen
,
Y.
Lu
,
H. M.
Ng
,
W.
Jiang
, and
E. L.
Garfunkel
,
Appl. Phys. Lett.
83
,
3401
(
2003
).
20.
K.
Ogata
,
S.-W.
Kim
,
Sz.
Fujita
, and
Sg.
Fujita
,
J. Cryst. Growth
240
,
112
(
2002
).
21.
H.-J.
Ko
,
Y. F.
Chen
,
Z.
Zhu
,
T.
Yao
,
I.
Kobayashi
, and
H.
Uchiki
,
Appl. Phys. Lett.
76
,
1905
(
2000
).
22.
Z. J.
Wang
,
H. M.
Zhang
,
Z. J.
Wang
,
L. G.
Zhang
, and
J. S.
Yuan
,
J. Mater. Res.
18
,
151
(
2003
).
23.
K.-K.
Kim
,
N.
Koguchi
,
Y.-W.
Ok
,
T.-Y.
Seong
, and
S.-J.
Park
,
Appl. Phys. Lett.
84
,
3810
(
2004
).
24.
25.
U.
Woggon
,
Optical Properties of Semiconductor Quantum Dots
,
Springer Tracks in Modern Physics
, Vol.
136
(
Springer
, Berlin
1996
).
26.
Y.
Kayanuma
,
Phys. Rev. B
38
,
9797
(
1988
).
27.
E. M.
Wong
and
P. C.
Searson
,
Appl. Phys. Lett.
74
,
2939
(
1999
).
28.
E.
Hanamura
,
J. Phys. Soc. Jpn.
28
,
120
(
1970
).
29.
C. Y.
Liu
,
S.
Yuan
,
J. R.
Dong
,
S. J.
Chua
,
M. C.Y.
Chan
, and
S. Z.
Wang
,
J. Appl. Phys.
94
,
2962
(
2003
).
30.
E. Y.P.
Varshni
,
Physica (Amsterdam)
34
,
149
(
1967
).
31.
N.
Malkomes
,
M.
Vergohl
, and
B.
Szyszka
,
J. Vac. Sci. Technol. A
19
,
414
(
2001
).
32.
A. P.
Roth
,
J. B.
Webb
, and
D. F.
Williams
,
Phys. Rev. B
25
,
7836
(
1982
).
33.
B. H.
Choi
and
H. B.
Im
,
Thin Solid Films
193∕194
,
712
(
1990
).
34.
H.
Teisseyre
,
P.
Perlin
,
T.
Suski
,
I.
Grzegory
,
S.
Porowski
,
J.
Jun
,
A.
Pietraszko
, and
T. D.
Moustakas
,
J. Appl. Phys.
76
,
2429
(
1994
).
You do not currently have access to this content.