A theoretical approach to predicting the spatial extent of the amorphous to crystalline transition region during the probe recording process on phase-change storage media is presented. The extent of this transition region determines the ultimate achievable linear density for data storage using phase-change materials. The approach has parallels with the slope theory used to find magnetic transition lengths in magnetic recording, and shows that the amorphous to crystalline transition length can be minimized by reducing the thickness of the phase-change layer, by minimizing lateral heat flow, and by maximizing the ratio of the activation energy for crystallization to the transition temperature .
REFERENCES
1.
H.
Kado
and T.
Tohda
, Jpn. J. Appl. Phys., Part 1
36
, 523
(1997
).2.
3.
T.
Gotoh
, K.
Sugawara
, and K.
Tanaka
, Jpn. J. Appl. Phys., Part 2
43
, L818
(2004
).4.
D.
Saluel
, J.
Daval
, B.
Bechevet
, C.
Germain
, and B.
Valon
, J. Magn. Magn. Mater.
193
, 488
(1999
).5.
K.
Sugawara
, T.
Gotoh
, and K.
Tanaka
, Jpn. J. Appl. Phys., Part 2
43
, L676
(2004
).6.
I.
Friedrich
, V.
Weidenhof
, W.
Njoroge
, P.
Franz
, and M.
Wuttig
, J. Appl. Phys.
87
, 4130
(2000
).7.
M.
Armand
, C. D.
Wright
, M. M.
Aziz
, and S.
Senkader
, Optical Data Storage 2003
, SPIE Vols. 5069
and 150
, edited by M.
O’Neill
and N.
Miyagawa
(SPIE
, Bellingham, WA, 2003
).8.
C. D.
Wright
, M. M.
Aziz
, M.
Armand
, S.
Senkader
, and W.
Yu
, Mater. Res. Soc. Symp. Proc.
803
, 61
(2003
).9.
M. L.
Williams
and R. L.
Comstock
, in An Analytical Model of the Write Process in Digital Magnetic Recording
, edited by C. D.
Graham
, Jr. and J. J.
Rhyne
, AIP Conf. Proc.
No. 5
(AIP
, New York, 1971
), p. 738
.10.
V. J.
Maller
and B. K.
Middleton
, Radio Electron. Eng.
44
, 281
(1974
).11.
J. J.
Miles
, D.
McKirdy
, R. W.
Chantrell
, and R.
Wood
, IEEE Trans. Magn.
39
, 1876
(2003
).12.
H. E.
Kissinger
, Anal. Chem.
29
, 1702
(1957
).13.
14.
J.
Kalb
, E.
Spaepen
, and M.
Wuttig
, J. Appl. Phys.
93
, 2389
(2003
).15.
D.
Wamwangi
, W.
Njoroge
, and M.
Wuttig
, Thin Solid Films
408
, 310
(2002
).16.
W. K.
Njoroge
and M.
Wuttig
, J. Appl. Phys.
90
, 3816
(2001
).17.
D. W.
Henderson
, J. Non-Cryst. Solids
30
, 301
(1979
).18.
M. M.
Aziz
, Ph.D. thesis, University of Manchester
, 1999
.19.
M. M.
Aziz
and C. D.
Wright
, J. Appl. Phys.
(unpublished).20.
E.
Kim
, S.
Kwun
, S.
Lee
, H.
Seo
, and J.
Yoon
, Appl. Phys. Lett.
76
, 3864
(2000
).21.
J. R.
Drabble
and H. J.
Goldsmid
, Thermal Conduction in Semiconductors
(Pergamon
, New York, 1961
).22.
K.
Nakayama
, K.
Kojima
, F.
Hayakawa
, Y.
Imai
, A.
Kitagawa
, and M.
Suzuki
, Jpn. J. Appl. Phys., Part 1
39
, 6157
(2000
).23.
K.
Morales-Sanchez
, E. F.
Prokhorov
, A.
Mendoza-Galvan
, and J.
Gonzalez-Hernandez
, Vacuum
69
, 361
(2003
).24.
K. I.
Amirkhanov
, Y. B.
Magomedov
, and S. M.
Ismailov
, Sov. Phys. Solid State
17
, 2359
(1976
).25.
K. I.
Amirkhanov
, Y. B.
Magomedov
, S. M.
Ismailov
, and K. O.
Alieva
, Sov. Phys. Semicond.
13
, 349
(1979
).26.
M. C.
Weinberg
, D. P.
Birnie
, and V. A.
Shneidman
, J. Non-Cryst. Solids
219
, 89
(1997
).27.
C. A.
Volkert
and M.
Wuttig
, J. Appl. Phys.
86
, 1808
(1999
).28.
D.
Kim
, S. J.
Kim
, S. H.
An
, and S. Y.
Kim
, Jpn. J. Appl. Phys., Part 1
42
, 5107
(2003
).29.
E.
Morales-Sanchez
, E. F.
Prokhorov
, J.
Gonzalez-Hernandez
, and A.
Mendoza-Galvan
, Thin Solid Films
471
, 243
(2005
).30.
31.
S.
Norrman
, T.
Andersson
, C. G.
Granqvist
, and O.
Hunderi
, Phys. Rev. B
18
, 674
(1978
).32.
C. G.
Granqvist
and O.
Hunderi
, Phys. Rev. B
18
, 1554
(1978
).33.
D. S.
McLachlan
, K.
Cai
, and G.
Sauti
, Int. J. Refract. Met. Hard Mater.
19
, 437
(2001
).34.
D.
Kim
, F.
Merget
, M.
Laurenzis
, P.
Haring-Bolivar
, and H.
Kurz
, J. Appl. Phys.
97
, 083538
(2005
).35.
V.
Weidenhof
, I.
Friedrich
, S.
Ziegler
, and M.
Wuttig
, J. Appl. Phys.
89
, 3168
(2001
).© 2005 American Institute of Physics.
2005
American Institute of Physics
You do not currently have access to this content.