Expressions for the “quantum capacitance” are derived, and regimes are discussed in which this concept may be useful in modeling electronic devices. The degree of quantization is discussed for one- and two-dimensional systems, and it is found that two-dimensional (2D) metals and one-dimensional (1D) metallic carbon nanotubes have a truly quantized capacitance over a restricted bias range. For both 1D and 2D semiconductors, a continuous description of the capacitance is necessary. The particular case of carbon nanotube field-effect transistors (CNFETs) is discussed in the context of one-dimensional systems. The bias regime in which the quantum capacitance may be neglected when computing the energy band diagram, in order to assist in the development of compact CNFET models, is found to correspond only to the trivial case where there is essentially no charge, and a solution to Laplace’s equation is sufficient for determining a CNFET’s energy band diagram. For fully turned-on devices, then, models must include this capacitance in order to properly capture the device behavior. Finally, the relationship between the transconductance of a CNFET and this capacitance is revealed.

1.
Serge
Luryi
,
Appl. Phys. Lett.
52
,
501
(
1988
).
2.
Anisur
Rahman
,
Jing
Guo
,
Supriyo
Datta
, and
Mark S.
Lundstrom
,
IEEE Trans. Electron Devices
50
,
1853
(
2003
).
3.
P. J.
Burke
,
IEEE Trans. Nanotechnol.
2
,
55
(
2003
).
4.
David K.
Ferry
and
Stephen M.
Goodnick
,
Transport in Nanostructures
(
Cambridge University Press
, New York,
1997
).
5.
Neil W.
Ashcroft
and
N. David
Mermin
,
Solid State Physics
, 1st ed. (
Harcourt College
, New York,
1976
).
6.
D. L.
John
,
L. C.
Castro
,
P. J. S.
Pereira
, and
D. L.
Pulfrey
, in
Proceedings of the NSTI Nanotech
, edited by
M.
Laudon
and
B.
Romanowicz
(
NSTI Publications
, Boston,
2004
), Vol.
3
, pp.
65
68
.
7.
L. C.
Castro
,
D. L.
John
, and
D. L.
Pulfrey
,
Nanotechnology
(accepted for publication). Available at http://nano.ece.ubc.ca/pub/publications.htm.
8.
L. C.
Castro
,
D. L.
John
, and
D. L.
Pulfrey
, in
Proceedings of the IEEE COMMAD
, edited by
Michael
Gal
(
IEEE
, Sydney, Australia,
2002
), , , pp.
303
306
.
9.
Zhen
Yao
,
Cees
Dekker
, and
Phaedon
Avouris
, in
Carbon Nanotubes
, edited by
Mildred S.
Dresselhaus
,
Gene
Dresselhaus
, and
Phaedon
Avouris
, Topics Appl. Phys., Vol.
80
(
Springer
, Berlin,
2001
), pp.
147
171
.
10.
L. C.
Castro
,
D. L.
John
, and
D. L.
Pulfrey
, in
Proceedings of the SPIE Conf. of Device and Process Technologies for MEMS, Microelectronics and Photonics III, Vol. 5276
, edited by
J.-C.
Chiao
et al. (
2003
)
1
10
. Available at http://nano.ece.ubc.ca/pub/publications.htm.
11.
Jing
Guo
,
Sebastien
Goasguen
,
Mark
Lundstrom
, and
Supriyo
Datta
,
Appl. Phys. Lett.
81
,
1486
(
2002
).
12.
S.
Heinze
,
M.
Radosavljević
,
J.
Tersoff
, and
Ph.
Avouris
,
Phys. Rev. B
68
,
235418
(
2003
).
13.
Adrian
Bachtold
,
Peter
Hadley
,
Takeshi
Nakanishi
, and
Cees
Dekker
,
Science
294
,
1317
(
2001
).
14.
J.
Appenzeller
,
J.
Knoch
,
V.
Derycke
,
R.
Martel
,
S.
Wind
, and
Ph.
Avouris
,
Phys. Rev. Lett.
89
,
126801
(
2002
).
15.
Ali
Javey
 et al.,
Nat. Mater.
1
,
241
(
2002
).
16.
B. M.
Kim
,
T.
Brintlinger
,
E.
Cobas
,
M. S.
Fuhrer
,
Haimei
Zheng
,
Z.
Yu
,
R.
Droopad
,
J.
Ramdani
, and
K.
Eisenbeiser
,
Appl. Phys. Lett.
84
,
1946
(
2004
).
17.
Sami
Rosenblatt
,
Yuval
Yaish
,
Jiwoong
Park
,
Jeff
Gore
,
Vera
Sazonova
, and
Paul L.
McEuen
,
Nano Lett.
2
,
869
(
2002
).
18.
Minkyu
Je
,
Sangyeon
Han
,
Ilgweon
Kim
, and
Hyungcheol
Shin
,
Solid-State Electron.
44
,
2207
(
2000
).
19.
D.
Jiménez
,
J. J.
Sáenz
,
B.
Iñíguez
,
J.
Suñé
,
L. F.
Marsal
, and
J.
Pallarès
,
IEEE Electron Device Lett.
25
,
314
(
2004
).
You do not currently have access to this content.