Epitaxial lateral overgrown (ELOG) gallium nitride (GaN) on SiC is being studied as a possible substrate for blue laser diodes. A defect density below 2.2×107cm2 in the wings, compared to 2×109cm2 in the windows, was achieved. Interaction of the overgrown GaN with the SiO2 mask causes a few degree wing tilt and a transition region of high defect density between windows and wings. Diminished PL, strong tensile stress, and a defect correlated line at around 3.4eV emerge in this up to two-micron-wide transition region. By changing the mask material from SiO2 to SiN we were able to reduce the wing tilt drastically to below 0.7°. This eliminates the defective transition region and extends the low strain and the low defect density area of the ELOG wings. The methods used to study strain, wing tilt, and threading dislocations in the ELOG samples are microphotoluminescence (μPL), transmission electron microscopy, x–ray diffraction, and scanning electron microscope. We also demonstrate the use of the first momentum of the μPL spectra as an effective means to measure strain distribution.

1.
http://www.blu-ray.com (
2002
).
2.
S.
Dassonneville
,
A.
Amokrane
,
B.
Sieber
,
J.-L.
Farvacque
,
B.
Beaumont
, and
P.
Gibart
,
J. Appl. Phys.
89
,
3736
(
2001
).
3.
A.
Amokrane
, et al.,
J. Phys.: Condens. Matter
12
,
10271
(
2000
).
4.
S.
Dassonneville
, et al.,
Physica B
273274
,
148
(
1999
).
5.
T.
Sugahara
, et al.,
Jpn. J. Appl. Phys., Part 2
37
,
L398
(
1998
).
6.
S. J.
Rosner
,
E. C.
Carr
,
M. J.
Ludowise
,
G.
Girolami
, and
H. I.
Erikson
,
Appl. Phys. Lett.
70
,
420
(
1997
).
8.
B.
Beaumont
,
Ph.
Vennegue’s
, and
P.
Gibart
,
Phys. Status Solidi B
227
,
1
(
2001
).
9.
K.
Hiramatsu
, et al.,
J. Cryst. Growth
221
,
316
(
2000
).
10.
K.
Motoki
, et al.,
J. Cryst. Growth
237239
,
912
(
2002
).
11.
S.
Nakamura
,
M.
Senoh
,
S.
Nagahama
,
N.
Isawa
,
T.
Matushita
, and
T.
Mukai
,
MRS Internet J. Nitride Semicond. Res.
4S1
,
G1
1
(
1999
).
12.
S.-I.
Nagahama
 et al.,
Jpn. J. Appl. Phys., Part 1
39
,
647
(
2000
).
13.
S. N.
Mohammad
,
A. A.
Salvador
, and
H.
Morcok
,
Proc. IEEE
83
,
1306
(
1995
).
16.
T. S.
Zheleva
, et al.,
MRS Internet J. Nitride Semicond. Res.
4S1
,
G3
38
(
1999
).
17.
U. T.
Schwarz
,
P. J.
Schuck
,
M. D.
Mason
,
R. D.
Grober
,
M.
Roskowski
,
S.
Einfeldt
, and
R. F.
Davis
,
Phys. Rev. B
67
,
045321
(
2003
).
18.
19.
A.
Sakai
,
H.
Sunakawa
, and
A.
Usui
,
Appl. Phys. Lett.
73
,
481
(
1998
).
20.
P.
Fini
, et al.,
Appl. Phys. Lett.
76
,
3893
(
2000
).
21.
B.-C.
Chung
and
M.
Gershenzon
,
J. Appl. Phys.
72
,
651
(
1992
).
22.
M.
Benyoucef
,
M.
Kuball
,
B.
Beaumont
, and
P.
Gibart
,
Appl. Phys. Lett.
80
,
2275
(
2002
).
23.
Y. T.
Rebane
and
Y. G.
Shreter
,
Inst. Phys. Conf. Ser.
155
,
703
(
1997
).
24.
S.
Fischer
, et al.,
J. Cryst. Growth
189–190
,
556
(
1998
).
25.
C.
Kiselowski
, et al.,
Phys. Rev. B
54
,
17745
(
1996
).
26.
V.
Dierolf
,
O.
Svitelskiy
,
G. S.
Cargill
 III
,
A. Yu.
Nikiforov
,
J.
Redwing
, and
J.
Acord
,
Mater. Res. Soc. Symp. Proc.
798
,
Y5
64
(
2003
).
27.
S.
Tomiya
 et al.,
Proceedings of the International Workshop on Nitride Semiconductors
,
IPAP Semidconductor Series
Vol.
1
, p.
284
(
2000
).
28.
S.
Tomiya
,
K.
Funato
,
T.
Asatsuma
,
T.
Hino
,
S.
Kijima
,
T.
Asano
, and
M.
Ikeda
,
Appl. Phys. Lett.
77
,
636
(
2000
).
29.
F.
Habel
and
M.
Seyboth
,
Phys. Status Solidi C
0
,
2448
(
2003
).
You do not currently have access to this content.