The structures of free-standing magnesium nanowires are systematically studied by using genetic algorithm simulations based on molecular dynamics with a tight-binding many body potential. Several helical multishell cylindrical growth sequences are observed for magnesium nanowires. The numbers of atomic strands show the even-odd or odd-even coupling between the inner and outershell with the differences of five strands, These multishell structures are made up of coaxial tubes in the three- and four-strands helical, centered pentagonal and hexagonal, and double-chain-core parallel curved surface epitaxy. The average binding energy and coordination numbers are calculated. The angular correlation functions and vibrational properties of magnesium nanowire have also been studied.

1.
U.
Landman
,
W. D.
Luedtke
,
N. A.
Burnham
, and
R. J.
Colton
,
Science
248
,
454
(
1990
).
2.
U.
Landman
,
W. D.
Luedtke
, and
J.
Gao
,
Langmuir
12
,
4514
(
1996
).
3.
N.
Agrait
,
J. G.
Rodrigo
, and
S.
Vieira
,
Phys. Rev. B
47
,
12345
(
1993
).
4.
J. I.
Pascual
,
J.
Mendez
,
J.
Gomez-Herrero
,
A. M.
Baro
,
N.
Garcia
, and
Vu Thien
Binh
,
Phys. Rev. Lett.
71
,
1852
(
1993
).
5.
L.
Olesen
,
E.
Laegsgaard
,
I.
Stensgaard
,
F.
Besenbacher
,
J.
Schiotz
,
P.
Stoltze
,
K. W.
Jacobsen
, and
J. K.
Norskov
,
Phys. Rev. Lett.
72
,
2251
(
1994
).
6.
G.
Rubio
,
N.
Agrait
, and
S.
Vieira
,
Phys. Rev. Lett.
76
,
2302
(
1996
).
7.
H.
Ohnishi
,
Y.
Kondo
, and
K.
Takayanagi
,
Nature (London)
395
,
780
(
1998
).
8.
C.
Muller
,
J. van
Ruitenbeek
, and
L. J. de
Jongh
,
Physica C
191
,
485
(
1992
).
9.
J. M.
Krans
,
J. van
Ruitenbeek
,
V. V.
Fisun
,
I. K.
Yanson
, and
L. J. de
Jongh
,
Nature (London)
375
,
767
(
1995
).
10.
E.
Scheer
 et al.,
Nature (London)
394
,
154
(
1998
).
11.
V.
Rodrigues
,
T.
Fuhrer
, and
D.
Ugarte
,
Phys. Rev. Lett.
85
,
4124
(
2000
).
12.
J. L.
Costa-Kramer
,
N.
Garcia
,
P.
Garcia-Mochales
,
P. A.
Serena
,
M. I.
Marques
, and
A.
Correia
,
Phys. Rev. B
55
,
5416
(
1997
).
13.
M.
Brandbyge
 et al.,
Phys. Rev. B
52
,
8499
(
1995
).
14.
K.
Hansen
,
E.
Laegsgaard
,
I.
Stensgaard
, and
F.
Besenbacher
,
Phys. Rev. B
56
,
2208
(
1997
).
15.
J. Van
Ruitenbeek
,
Naturwissenschaften
88
,
59
(
2001
).
16.
A.
Enomoto
,
S.
Kurokawa
,
and
A.
Sakai
,
Phys. Rev. B
65
,
125410
(
2002
).
17.
Y.
Kondo
and
K.
Takayanagi
,
Phys. Rev. Lett.
79
,
3455
(
1997
).
18.
Y.
Kondo
and
K.
Takayanagi
,
Science
289
,
606
(
2000
).
19.
T.
Kizuka
,
Phys. Rev. Lett.
81
,
4448
(
1998
).
20.
21.
J. M.
Krans
,
C. J.
Muller
,
I. K.
Yanson
,
Th. C. M.
Govaert
,
R.
Hesper
, and
J. M. Van
Ruitenbeek
,
Phys. Rev. B
48
,
14721
(
1993
).
22.
J. I.
Pascual
 et al.,
Science
267
,
1793
(
1995
).
23.
N.
Agrait
,
G.
Rubio
, and
S.
Vieira
,
Phys. Rev. Lett.
74
,
3995
(
1995
).
24.
A.
Lyalin
,
I. A.
Solov’yov
,
Andrey V.
Solov’yov
, and
W.
Greiner
,
Phys. Rev. A
67
,
063203
(
2003
).
25.
P.
Delaly
,
P.
Ballone
, and
J.
Buttet
,
Phys. Rev. B
45
,
3838
(
1992
).
26.
F.
Reuse
,
S. N.
Khanna
,
V. de
Coulon
, and
J.
Buttet
,
Phys. Rev. B
41
,
11743
(
1990
).
27.
W. T.
Geng
and
K. S.
Kim
,
Phys. Rev. B
67
,
233403
(
2003
).
28.
O.
Gulseren
,
F.
Ercolessi
, and
E.
Tosatti
,
Phys. Rev. Lett.
80
,
3775
(
1998
).
29.
F. Di.
Tolla
,
A. Dal
Corse
,
J. A.
Torres
, and
E.
Tosatti
,
Surf. Sci.
456
,
947
(
2000
).
30.
E.
Tosatti
,
S.
Prestipino
,
S.
Kostlmeier
,
A. Dal
Corso
, and
F. Di
Tolla
,
Science
291
,
288
(
2001
).
31.
P.
Sen
,
O.
Gulseren
,
T.
Yildirim
,
I. P.
Batra
, and
S.
Ciraci
,
Phys. Rev. B
65
,
235433
(
2002
).
32.
D.
Spisak
and
J.
Hafner
,
Phys. Rev. B
65
,
235405
(
2002
).
33.
J.
Opitz
,
P.
Zahn
, and
I.
Mertig
,
Phys. Rev. B
66
,
245417
(
2002
).
34.
B. X.
Li
,
P. L.
Cao
,
R. Q.
Zhang
, and
S. T.
Lee
Phys. Rev. B
65
,
125305
(
2002
).
35.
F.
Cleri
and
V.
Rosato
,
Phys. Rev. B
48
,
22
(
1993
).
36.
Y. H.
Luo
,
J. J.
Zhao
,
S. T.
Qiu
, and
G. H.
Wang
,
Phys. Rev. B
59
,
14903
(
1999
).
You do not currently have access to this content.