The silicon nanowire transistor (SNWT) is a promising device structure for future integrated circuits, and simulations will be important for understanding its device physics and assessing its ultimate performance limits. In this work, we present a three-dimensional (3D) quantum mechanical simulation approach to treat various SNWTs within the effective-mass approximation. We begin by assuming ballistic transport, which gives the upper performance limit of the devices. The use of a mode space approach (either coupled or uncoupled) produces high computational efficiency that makes our 3D quantum simulator practical for extensive device simulation and design. Scattering in SNWTs is then treated by a simple model that uses so-called Büttiker probes, which was previously used in metal-oxide-semiconductor field effect transistor simulations. Using this simple approach, the effects of scattering on both internal device characteristics and terminal currents can be examined, which enables our simulator to be used for the exploration of realistic performance limits of SNWTs.

1.
Y.
Taur
and
T. H.
Ning
,
Fundamentals of Modern VLSI Devices
(
Cambridge University Press
, Cambridge, U.K.,
1998
).
2.
T.
Saito
,
T.
Saraya
,
T.
Inukai
,
H.
Majima
,
T.
Nagumo
, and
T.
Hiramoto
,
IEICE Trans. Electron.
E85-C
,
1073
(
2002
).
3.
H.
Majima
,
Y.
Saito
, and
T.
Hiramoto
,
Tech. Dig. - Int. Electron Devices Meet.
2001
,
733
.
4.
B. S.
Doyle
 et al.,
IEEE Electron Device Lett.
24
,
263
(
2003
).
5.
S. H.
Zaidi
,
A. K.
Sharma
,
R.
Marquardt
,
S. L.
Lucero
, and
P. M.
Varangis
,
2001 First IEEE Conference on Nanotechnology
,
28–30 October 2001
, p.
189
.
6.
M.
Je
,
S.
Han
,
I.
Kim
, and
H.
Shin
,
Solid-State Electron.
28
,
2207
(
2000
).
7.
Y.
Cui
,
Z.
Zhong
,
D.
Wang
,
W.
Wang
, and
C. M.
Lieber
,
Nano Lett.
3
,
149
(
2003
).
9.
E.
Polizzi
and
N. B.
Abdallah
,
Phys. Rev. B
66
,
245301
(
2002
).
10.
E.
Polizzi
and
N. B.
Abdallah
, (unpublished).
11.
R.
Venugopal
,
Z.
Ren
,
S.
Datta
,
M. S.
Lundstrom
, and
D.
Jovanovic
,
J. Appl. Phys.
92
,
3730
(
2002
).
12.
A.
Rahman
,
M. S.
Lundstrom
, and
A. W.
Ghosh
(unpublished).
13.
S.
Datta
,
Superlattices Microstruct.
28
,
253
(
2000
).
14.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Cambridge University Press
, Cambridge, U.K.,
1997
).
15.
E.
Polizzi
and
S.
Datta
,
Proceedings of the 2003 third IEEE Conference on Nanotechnology
,
12-14 August 2003
, p.
40
.
16.
17.
R.
Venugopal
,
M.
Paulsson
,
S.
Goasguen
,
S.
Datta
, and
M. S.
Lundstrom
,
J. Appl. Phys.
93
,
5613
(
2003
).
18.
J.
Wang
,
E.
Polizzi
, and
M.
Lundstrom
,
Tech. Dig. - Int. Electron Devices Meet.
2003
,
695
.
20.
J.
Wang
and
M.
Lundstrom
,
Tech. Dig. - Int. Electron Devices Meet.
2002
,
710
.
21.
J.
Guo
,
S.
Datta
,
M.
Lundstrom
, and
M. P.
Anantram
, In. J. Multiscale Computational Engineering (submitted).
22.
F.
Stern
and
W. E.
Howard
,
Phys. Rev.
163
,
816
(
1967
).
23.
A.
Rahman
and
M.
Lundstrom
,
IEEE Trans. Electron Devices
49
,
481
(
2002
).
You do not currently have access to this content.