Charge trapping and interface states generation by electrical stress and gamma photons (Co60) were studied on n-channel metal-oxide-semiconductor field-effect transistors, using the gate-controlled-diode technique. Creation of states during positive charge trapping and during its recombination with electrons is made evident by the technique. The growth rate of defects and the number of interface states per trapped hole are calculated. While the number of interface states per trapped hole is within the same order of magnitude for both stress mechanisms, the injection case exhibits a turnaround of the interface states density as a function of the trapped charge, which is not seen in the radiation case. The gate-controlled diode is a sensitive technique for interface states detection at low total doses.

1.
P. M.
Lenahan
and
J. F.
Conley
,
IEEE Trans. Nucl. Sci.
45
,
2413
(
1998
).
2.
R.
Wunstorf
,
IEEE Trans. Nucl. Sci.
44
,
806
(
1997
).
3.
T. P.
Ma
and
P. V.
Dressendorfer
,
Ionizing Radiation Effects In MOS Devices & Circuits
(
John Wiley & Sons
, New York,
1989
).
4.
D. K.
Schroder
and
J. A.
Babcock
,
J. Appl. Phys.
94
,
1
(
2003
).
5.
J. H.
Stathis
,
IBM J. Res. Dev.
46
,
265
(
2002
).
6.
J. S.
Suehle
,
IEEE Trans. Electron Devices
49
,
958
(
2002
).
7.
Y.
Nishioka
,
E. F.
da Silva
, and
T. P.
Ma
,
Appl. Phys. Lett.
52
,
720
(
1988
).
8.
M.
Knoll
,
D.
Braunig
, and
W. R.
Fahrner
,
J. Appl. Phys.
53
,
6946
(
1982
).
9.
W. D.
Zhang
,
J. F.
Zhang
,
M. J.
Uren
,
G.
Groeseneken
,
R.
Degraeve
,
M.
Lalor
, and
D.
Burton
,
Appl. Phys. Lett.
79
,
3092
(
2001
).
10.
P. M.
Lenahan
,
J. F.
Conley
, and
B. D.
Wallace
,
J. Appl. Phys.
81
,
6822
(
1997
).
11.
J. F.
Conley
,
P. M.
Lenahan
,
B. D.
Wallace
, and
P.
Cole
,
IEEE Trans. Nucl. Sci.
44
,
1804
(
1997
).
12.
P. M.
Lenahan
and
J. F.
Conley
,
Appl. Phys. Lett.
71
,
3126
(
1997
).
13.
P. M.
Lenahan
,
J. J.
Mele
,
J. F.
Conley
,
R. K.
Lowry
, and
D.
Woodbury
,
IEEE Trans. Nucl. Sci.
46
,
1534
(
1999
).
14.
A. S.
Grove
,
Physics and Technology of Semiconductor Devices
(
John Wiley & Sons
, New York,
1967
).
15.
S. M.
Sze
,
Physics of Semiconductor Devices
(
John Wiley & Sons
, New York,
1981
).
16.
D.
Arnold
,
E.
Cartier
, and
D. J.
Di Maria
,
Phys. Rev. B
49
,
10278
(
1994
).
17.
D. J.
Di Maria
,
E.
Cartier
, and
D. A.
Buchanan
,
J. Appl. Phys.
80
,
304
(
1996
).
18.
D. J.
Di Maria
,
E.
Cartier
, and
D.
Arnold
,
J. Appl. Phys.
73
,
3367
(
1993
).
19.
D. J.
Di Maria
and
J. W.
Stasiak
,
J. Appl. Phys.
65
,
2342
(
1989
).
20.
J. F.
Zhang
,
S.
Taylor
, and
W.
Eccleston
,
J. Appl. Phys.
71
,
725
(
1992
).
21.
D. J.
Di Maria
,
D. A.
Buchanan
,
J. H.
Stathis
, and
R. E.
Stahlbush
,
J. Appl. Phys.
77
,
2032
(
1995
).
22.
S. K.
Lai
,
J. Appl. Phys.
54
,
2540
(
1983
).
23.
D. B.
Brown
and
N. S.
Saks
,
J. Appl. Phys.
70
,
3734
(
1991
)
24.
J. F.
Zhang
,
C. Z.
Zhao
,
R.
Degraeve
, and
G.
Groeseneken
,
J. Appl. Phys.
93
,
6107
(
2003
).
25.
I. S.
Al-kofahi
,
J. F.
Zhang
, and
G.
Groeseneken
,
J. Appl. Phys.
81
,
2686
(
1997
).
26.
C.
Becker
,
C.
Gobling
,
C.
Lichau
,
T.
Wubben
,
J.
Wustenfeld
, and
R.
Wunstorf
,
Nucl. Instrum. Methods Phys. Res. A
444
,
605
(
2000
).
27.
G. P.
Summers
,
E. A.
Burke
, and
R. J.
Walters
,
IEEE Trans. Nucl. Sci.
40
,
1372
(
1993
).
28.
D. J.
Di Maria
,
Appl. Phys. Lett.
75
,
2427
(
1999
).
29.
M.
Nafria
,
J.
Suñe
, and
X.
Aymerich
,
Microelectron. Reliab.
36
,
871
(
1996
).
30.
P.
Winokur
and
M.
Sokoloski
,
Appl. Phys. Lett.
28
,
627
(
1976
).
31.
F. B.
McLean
,
IEEE Trans. Nucl. Sci.
27
,
1651
(
1980
).
32.
M. R
Shaneyfelt
,
J. R.
Schwank
,
D. M.
Fleetwood
,
P. S.
Winokur
,
K. L.
Hughes
, and
F. W.
Sexton
,
IEEE Trans. Nucl. Sci.
37
,
1632
(
1990
).
You do not currently have access to this content.