Piezoelectric actuators normally have complicated structures and work under severe loading conditions, e.g., high driving electric field and significant compressive preload. This study is focused on the experimental investigation of the electromechanical properties of a commercial soft lead zirconate titanate material under loading conditions simulating the in-service environment of high-strain actuators. The polarization and strain responses were first measured under a constant-stress preload. A significant enhancement of the dielectric and piezoelectric performance is observed within a small prestress range. At much higher preload levels, the predominant mechanical depolarization effect makes the material exhibits hardly any piezoeffect. In the other two series of tests, the specimen was subjected to cyclic mechanical load with different mean stresses and amplitudes. When the stress is applied in-phase with electrical loading, the polarization and strain outputs are found to monotonically decrease with an increase in stress amplitude, until mechanical loading completely impedes the piezoelectric response. An inverse effect occurs for the out-of-phase electromechanical loading tests, in which the polarization and strain outputs increase with increasing stress amplitude. In general, the enhanced polarization and strain responses are accompanied by an unfavorable increased hysteresis and, consequently, increased energy loss. An attempt has been made to explain the experimental findings by simultaneously taking into account the effects of dielectric response, elastic deformation, irreversible domain switching, and piezoeffects.

1.
K.
Uchino
,
Ferroelectric Devices
(
Marcel Dekker
, New York,
2000
).
2.
B.
Jaffe
,
W. R.
Cook
, and
H.
Jaffe
,
Piezoelectric Ceramics
(
Academic
, New York,
1971
).
3.
Y.
Xu
,
Ferroelectric Materials and Their Applications
(
North-Holland
, Amsterdam,
1991
).
4.
C. S.
Lynch
,
Acta Mater.
44
,
4137
(
1996
).
5.
Q. M.
Zhang
,
H.
Wang
,
N.
Kim
, and
L. E.
Cross
,
J. Appl. Phys.
75
,
445
(
1994
).
6.
IEEE Standard on Piezoelectricity
,
ANSI/IEEE Std.
176-1987, IEEE, New York, NY 10017, (
1988
).
7.
C.
Schuh
,
Th.
Steinkopff
,
A.
Wolff
, and
K.
Lubitz
,
Proc. SPIE
3992
,
165
(
2000
).
8.
M.
Mitrovic
,
G. P.
Carman
, and
F. K.
Straub
,
Int. J. Solids Struct.
38
,
4357
(
2001
).
9.
K.
Yao
,
K.
Uchino
,
Y.
Xu
,
S.-X.
Dong
, and
L.-C.
Lim
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47
,
819
(
2000
).
10.
F. K.
Straub
and
D. J.
Merkley
,
Proc. SPIE
2443
,
89
(
1995
).
11.
T.
Fett
,
S.
Müller
,
D.
Munz
, and
G.
Thun
,
J. Mater. Sci. Lett.
17
,
261
(
1998
).
12.
P. M.
Chaplya
and
G. P.
Carman
,
J. Appl. Phys.
90
,
5278
(
2001
).
13.
D.
Viehland
,
F.
Tito
,
E.
McLaughlin
,
H.
Robinson
,
R.
Janus
,
L.
Ewart
, and
J.
Powers
,
J. Appl. Phys.
90
,
1496
(
2001
).
14.
D.
Viehland
,
J.-F.
Li
,
E.
McLaughlin
,
J.
Powers
,
R.
Janus
, and
H.
Robinson
,
J. Appl. Phys.
95
,
1969
(
2004
).
15.
D. Y.
Zhou
,
M.
Kamlah
, and
D.
Munz
,
J. Mater. Res.
19
,
834
(
2004
).
16.
D. Y.
Zhou
, Ph.D. dissertation,
University Karlsruhe
,
2003
.
17.
J. A.
Collins
,
Failure of Materials in Mechanical Design
(
John Wiley & Sons
, New York,
1981
).
18.
W.
Hackenberger
,
M.-J.
Pan
,
V.
Vedula
,
P.
Pertsch
,
W.-W.
Cao
,
C.
Randall
, and
T.
Shrout
,
Proc. SPIE
3324
,
28
(
1998
).
You do not currently have access to this content.