Structural distortion of ferroelectric thin films caused by film strain has a strong impact on the microwave dielectric properties. SrTiO3 thin films epitaxially grown on (110)DyScO3 substrates using molecular beam epitaxy are extremely strained (i.e., 1% in-plane tensional strain) from 3.905Å of bulk SrTiO3. The room-temperature in-plane dielectric constant and its tuning of the films at 10GHz are observed to be 6000 and 75% with an electric field of 1Vμm, respectively. The control of strain in SrTiO3 provides a basis for room-temperature tunable microwave applications by elevating its phase-transition peak to room temperature.

1.
C. H.
Mueller
,
R. R.
Romanofsky
, and
F. A.
Miranda
,
IEEE Potentials
20
,
36
(
2001
).
2.
S. S.
Gevorgian
and
E. L.
Kollberg
,
IEEE Trans. Microwave Theory Tech.
49
,
2117
(
2001
).
3.
D. S.
Korn
and
H.-D.
Wu
,
Integr. Ferroelectr.
24
,
215
(
1999
).
4.
T.
Sakudo
and
H.
Unoki
,
Phys. Rev. Lett.
26
,
851
(
1971
).
5.
R. C.
Neville
,
B.
Hoeneisen
, and
C. A.
Mead
,
J. Appl. Phys.
43
,
2124
(
1972
).
6.
K. A.
Muller
and
H.
Burkard
,
Phys. Rev. B
19
,
3593
(
1979
).
7.
F. W.
Van Keuls
 et al.,
Appl. Phys. Lett.
71
,
3075
(
1997
);
D.
Fuchs
,
C. W.
Schneider
,
R.
Schneider
, and
H.
Rietschel
,
J. Appl. Phys.
85
,
7362
(
1999
).
8.
W. J.
Merz
,
Phys. Rev.
78
,
52
(
1950
).
9.
10.
P. W.
Forsbergh
, Jr.
,
Phys. Rev.
93
,
686
(
1954
).
11.
G. A.
Samara
and
A. A.
Giardini
,
Phys. Rev.
140
,
A954
(
1965
).
12.
T.
Schimizu
,
Solid State Commun.
102
,
523
(
1997
).
13.
N. A.
Pertsev
,
A. G.
Zembilgotov
, and
A. K.
Tagantsev
,
Phys. Rev. Lett.
80
,
1988
(
1998
).
14.
W.
Chang
,
J. S.
Horwitz
,
J. M.
Pond
,
S. W.
Kirchoefer
, and
D. B.
Chrisey
,
Mater. Res. Soc. Symp. Proc.
526
,
205
(
1998
).
15.
W.
Chang
,
J. S.
Horwitz
,
W. J.
Kim
,
J. M.
Pond
,
S. W.
Kirchoefer
,
C. M.
Gilmore
,
S. B.
Qadri
, and
D. B.
Chrisey
,
Integr. Ferroelectr.
24
,
257
(
1999
).
16.
N. A.
Pertsev
,
A. K.
Tagantsev
, and
N.
Setter
,
Phys. Rev. B
61
, R
825
(
2000
);
N. A.
Pertsev
,
A. K.
Tagantsev
,
and
N.
Setter
,
Phys. Rev. B
65
,
219901
(E) (
2002
).
17.
W.
Chang
,
S. W.
Kirchoefer
,
J. M.
Pond
,
J. S.
Horwitz
, and
L.
Sengupta
,
J. Appl. Phys.
92
,
1528
(
2002
).
18.
J. H.
Haeni
,
C. D.
Theis
, and
D. G.
Schlom
,
J. Electroceram.
4
,
385
(
2000
).
19.
J. H.
Haeni
 et al.,
Nature (London)
(to be published).
20.
J. A. W.
Dalziel
,
J. Chem. Soc.
1993
(
1959
).
21.
X-ray diffraction
JCPDS, Card No.
 27-0204 for DyScO3.
22.
S. S.
Gevorgian
,
T.
Martinsson
,
P. I. J.
Linner
, and
E. L.
Kollberg
,
IEEE Trans. Microwave Theory Tech.
44
,
896
(
1996
).
23.
A. F.
Devonshire
,
Adv. Phys.
3
,
85
(
1954
).
24.

It is worth to note that the Gibb’s energy expression to derive the TCx relationship took positive signs (i.e., +) for all electrostriction-related terms like the Devonshire expression (see Ref. 23) so that the relevant electrostriction coefficients had the opposite signs (i.e., Q11[m4C2]=0.10 and Q12[m4C2]=0.034) to the case of a Gibb’s energy expression containing negatively signed electrostriction-related terms.

You do not currently have access to this content.