Polyvinylidene fluoride-trifluoroethylene [P(VDF-TrFE) 7030mol%] copolymer can be transformed from a normal ferroelectric to a relaxor ferroelectric material after proton irradiation. The phase transition peak broadens and shifts towards lower temperature as the measurement frequency decreases. The occurrence of a slim polarization-electric field loop is another evidence of the effect of proton irradiation. In the present study, 0-3 composites are fabricated by incorporating 0.9Pb(Mg13Nb23)O30.1PbTiO3 ceramic powder into a P(VDF-TrFE) 7030mol% copolymer matrix. 0.9PMN-0.1PT ceramic is a relaxor ferroelectric with high dielectric permittivity. It was found that the relative permittivity of an unirradiated PMN-PT∕P(VDF-TrFE) 0-3 composite increases with increasing ceramic volume fraction. With a dosage of 1000kGy (where 1Gy=100rad), the composite exhibits a broad peak in the relative permittivity. In the unirradiated composites, the remnant polarization increases gradually with PMN-PT volume fraction. After irradiation, the remnant polarization of the composites with different PMN-PT volume fractions is similar to that of the irradiated copolymer. Energy storage capabilities of the samples were evaluated which showed that proton irradiated composites have a potential for energy storage applications.

1.
Y.
Rao
,
S.
Ogitani
,
P.
Kohl
, and
C. P.
Wong
,
International Symposium on Advanced Packing Materials
,
2000
, p.
32
.
2.
G.
Randolf
,
H.
Frais-Kolbl
, and
H.
Hauser
,
IEEE Annual Report
1
,
220
(
1996
).
3.
C. J.
Dias
and
D. K.
Das-Gupta
,
Proceedings of the Fourth International Conference on Properties and Applications of Dielectric Materials
,
1994
, p.
4101
.
4.
Q. Q.
Zhang
,
H. L. W.
Chan
, and
C. L.
Choy
,
Composites, Part A
30
,
163
(
1998
).
5.
Y.
Chen
,
H. L. W.
Chan
, and
C. L.
Choy
,
IEEE Proceedings on Applications of Ferroelectrics
, 1996, Vol.
2
, p.
619
.
6.
M.
Villegas
,
A. C.
Caballero
,
M.
Kosec
,
C.
Moure
,
P.
Duran
, and
J. F.
Fernandez
,
J. Mater. Res.
14
,
891
(
1999
).
7.
T.
Furukawa
,
J. X.
Wen
,
K.
Suzuki
,
Y.
Takashina
, and
M.
Date
,
J. Appl. Phys.
56
,
829
(
1984
).
8.
Q. M.
Zhang
,
Z. Y.
Cheng
, and
V.
Bharti
,
J. Appl. Phys.
70
,
307
(
2000
).
9.
Q. M.
Zhang
,
V.
Bharathi
, and
X.
Zhao
,
Science
280
,
2101
(
1998
).
10.
Y.
Bai
,
Z. Y.
Cheng
,
V.
Bharti
,
H. S.
Xu
, and
Q. M.
Zhang
,
IEEE Proceedings on Applications of Ferroelectrics
, 2000, Vol.
2
, p.
797
.
11.
S. U.
Adikary
,
H. L. W.
Chan
,
C. L.
Choy
,
B.
Sundarvel
, and
I. H.
Wilson
,
Compos. Sci. Technol.
62
,
2161
(
2002
).
12.
S. L.
Swartz
and
T. R.
Shrout
,
Mater. Res. Bull.
17
,
1245
(
1982
).
13.
D. A. G.
Bruggeman
,
Ann. Phys. (Leipzig)
24
,
635
(
1935
).
14.
T.
Furukawa
,
Key Engineering Materials
, edited by
D. K.
Das-Gupta
(
Trans Tech
, Switzerland,
1994
), Vol.
92–94
, pp.
20
23
, Chap. 7.
15.
T. R.
Shrout
and
J.
Fielding
, Jr
,
IEEE Proceedings on Ultrasonics
, 1990, Vol.
2
, p.
711
.
16.
L. E.
Cross
,
Ferroelectrics
76
,
241
(
1987
).
17.
S. T.
Lau
,
H. L. W.
Chan
,
B.
Sundarvel
,
I. H.
Wilson
, and
C. L.
Choy
,
111th International Symposium on Electrets
,
2002
, p.
102
.
18.
S. U.
Adikary
,
H. L. W.
Chan
,
C. L.
Choy
,
B.
Sundarvel
, and
I. H.
Wilson
,
Jpn. J. Appl. Phys., Part 1
41
,
6938
(
2002
).
19.
I.
Burn
and
D. M.
Smyth
,
J. Mater. Sci.
7
,
339
(
1972
).
20.
B.
Jaffe
,
Proc. IRE
49
,
1264
(
1961
).
21.
D. K.
Das-Gupta
and
S.
Zhang
,
Ferroelectrics
134
,
71
(
1992
).
22.
G. R.
Love
,
J. Am. Ceram. Soc.
73
,
323
(
1990
).
You do not currently have access to this content.