An analytical band Monte Carlo model has been developed to study electron transport and impact ionization in In0.53Ga0.47As. Our simulations show that it is important to include the second conduction band at X7 because impact ionization becomes significant in this higher band at fields above 100kVcm. The higher ionization rate here is found to be responsible for the strong field dependence of the ionization coefficient for electric fields above 180kVcm. At lower fields the weak field dependence results from the large energy separation between the Γ6 and X7 valleys which confines most of the electrons to the first conduction band, where the ionization rate is lower. Although the electron impact ionization coefficient of InGaAs is comparable to that of GaAs at 300kVcm, the average electron energy at impact ionization is 1.59eV lower than in GaAs and the average time to impact ionization is almost twice that in GaAs, indicating a slower drift of electrons in InGaAs prior to impact ionization

1.
J. S.
Ng
,
J. P. R.
David
, and
G. J.
Rees
,
J. Appl. Phys.
91
,
5200
(
2002
).
2.
J. S.
Ng
,
C. H.
Tan
,
J. P. R.
David
,
G.
Hill
, and
G. J.
Rees
,
IEEE Trans. Electron Devices
50
,
901
(
2003
).
3.
S. M.
Sze
and
G.
Gibbons
,
Appl. Phys. Lett.
8
,
111
(
1966
).
4.
D.
Ritter
,
R. A.
Hamm
,
A.
Feygenson
, and
M. B.
Panish
,
Appl. Phys. Lett.
60
,
3150
(
1992
).
5.
J.
Bude
and
K.
Hess
,
J. Appl. Phys.
72
,
3554
(
1992
).
6.
T. P.
Pearsall
,
Appl. Phys. Lett.
36
,
218
(
1980
).
7.
F.
Osaka
,
T.
Mikawa
, and
T.
Kaneda
,
IEEE J. Quantum Electron.
QE-21
,
1326
(
1985
).
8.
J.
Urquhart
,
D. J.
Robbins
,
R. I.
Taylor
, and
A. J.
Moseley
,
Semicond. Sci. Technol.
5
,
789
(
1990
).
9.
S. R.
Ahmed
,
B. R.
Nag
, and
M.
Deb Roy
,
Solid-State Electron.
28
,
1193
(
1985
).
10.
J.
Singh
and
K. K.
Bajaj
,
J. Appl. Phys.
57
,
322
(
1985
).
11.
J. L.
Thobel
,
L.
Baudry
,
A.
Cappy
,
P.
Bourel
, and
R.
Fauquembergue
,
Appl. Phys. Lett.
56
,
346
(
1990
).
12.
M. V.
Fischetti
,
IEEE Trans. Electron Devices
ED-38
,
634
(
1991
).
14.
D.
Harrison
, Ph.D. thesis,
University of Durham
,
1998
.
15.
D. S.
Ong
,
K. F.
Li
,
S. A.
Plimmer
,
G. J.
Rees
,
J. P. R.
David
, and
P. N.
Robson
,
J. Appl. Phys.
87
,
7885
(
2000
).
16.
J. R.
Chelikowsky
and
M. L.
Cohen
,
Phys. Rev. B
14
,
556
(
1976
).
17.
J. R.
Hauser
,
M. A.
Littlejohn
, and
T. H.
Glisson
,
Appl. Phys. Lett.
28
,
458
(
1976
).
18.
A.
Sleiman
,
J. L.
Thobel
,
P.
Bourel
,
F.
Dessenne
, and
R.
Fauquembergue
,
Semicond. Sci. Technol.
12
,
69
(
1997
).
19.
T. H.
Windhorn
,
L. W.
Cook
, and
G. E.
Stillman
,
IEEE Electron Device Lett.
EDL-3
,
18
(
1982
).
20.
J. H.
Marsh
,
Appl. Phys. Lett.
41
,
732
(
1982
).
21.
G. E.
Bulman
,
V. M.
Robbins
, and
G. E.
Stillman
,
IEEE Trans. Electron Devices
ED-32
,
2454
(
1985
).
22.
J.
Allam
,
J. Appl. Phys.
36
,
1529
(
1997
).
23.
O.
Mouton
,
J. L.
Thobel
, and
R.
Fauquembergue
,
J. Appl. Phys.
81
,
3160
(
1997
).
24.
T. G.
Sánchez
,
J. E.
Velázquez Pérez
,
P. M.
Gutlérrez Conde
, and
D. P.
Collantes
,
Semicond. Sci. Technol.
6
,
862
(
1991
).
You do not currently have access to this content.