Co-implanting Si into 4H–SiC with Al hinders the ability of the Al acceptors to activate electrically at the lower annealing temperatures, but for annealing temperatures>1600°C, the effect is much less, suggesting that the activation energy for incorporating Al as an acceptor no longer controls the rate-determining step in this process. The cathodoluminescence data indicate that Al acceptors are trapped out by the DI defect, and this effect is more pronounced for the higher annealing temperatures. The increase in χmin with the annealing temperature at the higher temperatures can be explained by the nucleation and growth of structural defects, and the transmission electron miscroscopy results show that these defects are stacking faults. The stacking faults can be described as being quantum dots of different polytypes or domain walls with a point-defect periodic structure between the faulted and unfaulted regions, and they could be the source for the peaks associated with the DI defect. Also, we observed that the higher-energy peak in the DI doublet increases in intensity relative to the lower-energy peak as the annealing temperature and the initial implant damage increase.

1.
N. S.
Saks
,
A. K.
Agarwal
,
S.-H.
Ryu
, and
J. W.
Palmour
,
J. Appl. Phys.
90
,
2796
(
2001
).
2.
J. M.
Bluet
,
J.
Pernot
,
J.
Camassei
,
S.
Contreras
,
J. L.
Robert
,
J. F.
Michael
, and
T.
Billon
,
J. Appl. Phys.
88
,
1971
(
2000
).
3.
K. A.
Jones
,
M. A.
Derenge
,
M. H.
Ervin
,
P. B.
Shah
,
J. A.
Freitas
,
R. D.
Vispute
,
R. P.
Sharma
, and
G. J.
Gerardi
,
Phys. Status Solidi A
201
,
486
(
2004
).
4.
W. J.
Schaffer
,
G. H.
Negley
,
K. G.
Irvine
, and
J. W.
Palmour
,
Mater. Res. Soc. Symp. Proc.
339
,
595
(
1994
).
5.
P. G.
Neudeck
and
M.
Dudley
,
IEEE Trans. Electron Devices
46
,
478
(
1999
).
6.
J. B.
Tucker
 et al,
IEEE Trans. Electron Devices
48
,
2665
(
2001
).
7.
J. N.
Shenoy
,
J. A.
Cooper
, Jr.
, and
M. R.
Melloch
,
IEEE Electron Device Lett.
18
,
93
(
1997
).
8.
K.
Ueno
and
T.
Oikawa
,
IEEE Electron Device Lett.
20
,
624
(
1999
).
9.
K. A.
Jones
 et al,
Mater. Sci. Eng., B
61–62
,
281
(
1999
).
10.
L.
Muehlhoff
,
W. J.
Choyke
,
M. J.
Bozac
, and
J. T.
Yates
, Jr.
,
J. Appl. Phys.
60
,
2842
(
1986
).
11.
L. B.
Ruppalt
 et al,
Solid-State Electron.
47
,
253
(
2003
).
12.
R. D.
Vispute
 et al,
Appl. Phys. Lett.
71
,
102
(
1999
).
13.
M. V.
Rao
,
P.
Griffiths
,
J.
Gardner
,
G. W.
Holland
,
M.
Ghezzo
,
J.
Kretchmer
,
G.
Kelner
, and
J. A.
Freitas
, Jr.
,
J. Electron. Mater.
25
,
75
(
1996
).
14.
L.
Storasta
,
F. H. C.
Carlsson
,
S. G.
Sridhara
,
J. P.
Bergman
,
A.
Henry
,
T.
Egilsson
,
A.
Hallen
, and
E.
Janzen
,
Appl. Phys. Lett.
18
,
46
(
2001
).
15.
T.
Dalibor
,
G.
Pensl
,
T.
Kimoto
,
H.
Matsunami
,
S.
Srindhara
,
R. P.
Devaty
, and
W. J.
Choyke
,
Diamond Relat. Mater.
6
,
1333
(
1997
).
16.
T.
Egilsson
,
J. P.
Bergman
,
I. G.
Ivanov
,
A.
Henry
, and
E.
Janzen
,
Phys. Rev. B
59
,
1956
(
1999
).
17.
L.
Patrick
and
W. J.
Choyke
,
Phys. Rev. B
5
,
3253
(
1972
).
18.
T.
Ohno
,
H.
Onose
,
Y.
Sugawara
,
K.
Asano
,
T.
Hayashi
, and
T.
Yatsuo
,
J. Electron. Mater.
28
,
180
(
1999
).
19.
I. O.
Usov
,
A. A.
Suvorova
,
V. V.
Sololov
,
Y. A.
Kudryavtsev
, and
A. V.
Suvorov
,
J. Appl. Phys.
86
,
6039
(
1999
).
20.
T. A.
Kuhr
,
J. Q.
Liu
,
H. J.
Chung
, and
M.
Skowronski
,
J. Appl. Phys.
92
,
5863
(
2002
).
21.
K. A.
Jones
,
T. S.
Zheleva
,
V. N.
Kulkarni
,
M. H.
Ervin
,
M. A.
Derenge
, and
R. D.
Vispute
(unpublished).
22.
H. J.
Chung
,
J. Q.
Liu
, and
M.
Skowronski
,
Appl. Phys. Lett.
81
,
3759
(
2002
).
You do not currently have access to this content.