Crack-free bulk-like GaN with high crystalline quality has been obtained by hydride-vapor-phase-epitaxy (HVPE) growth on a two-step epitaxial lateral overgrown GaN template on sapphire. During the cooling down stage, the as-grown 270-μm-thick GaN layer was self-separated from the sapphire substrate. Plan-view transmission electron microscopy images show the dislocation density of the free-standing HVPE-GaN to be ∼2.5×107cm−2 on the Ga-polar face. A low Ga vacancy related defect concentration of about 8×1015cm−3 is extracted from positron annihilation spectroscopy data. The residual stress and the crystalline quality of the material are studied by two complementary techniques. Low-temperature photoluminescence spectra show the main neutral donor bound exciton line to be composed of a doublet structure at 3.4715 (3.4712) eV and 3.4721 (3.4718) eV for the Ga- (N-) polar face with the higher-energy component dominating. These line positions suggest virtually strain-free material on both surfaces with high crystalline quality as indicated by the small full width at half maximum values of the donor bound exciton lines. The E1(TO) phonon mode position measured at 558.52 cm−1 (Ga face) by infrared spectroscopic ellipsometry confirms the small residual stress in the material, which is hence well suited to act as a lattice-constant and thermal-expansion-coefficient matched substrate for further homoepitaxy, as needed for high-quality III-nitride device applications.

1.
P. Gibart, B. Beaumont, and P. Vennéguès, in Nitride Semiconductors Handbook on Materials and Devices, edited by P. Ruterana, M. Albrecht, and J. Neugebauer (Wiley–VCH, Weinheim, 2003), p. 45.
2.
R. F.
Davis
,
T.
Gehrke
,
K. J.
Linthicum
,
T. S.
Zheleva
,
E. A.
Preble
,
P.
Rajagopal
,
C. A.
Zorman
, and
M.
Mehregany
,
J. Cryst. Growth
225
,
134
(
2001
).
3.
N.
Grandjean
,
B.
Damilano
,
J.
Massies
,
G.
Neu
,
M.
Teissere
,
I.
Grzegory
,
S.
Porowski
,
M.
Gallart
,
P.
Lefebvre
,
B.
Gil
, and
M.
Albrecht
,
J. Appl. Phys.
88
,
183
(
2000
).
4.
S.
Nagahama
,
N.
Iwasa
,
M.
Senoh
,
T.
Matsushita
,
Y.
Sugimoto
,
H.
Kiyoku
,
T.
Kozaki
,
M.
Sano
,
H.
Matsumura
,
H.
Umemoto
,
K.
Chocho
, and
T.
Mukai
,
Jpn. J. Appl. Phys., Part 2
39
,
L647
(
2000
).
5.
J. L.
Weyher
,
M.
Albrecht
,
T.
Wosinski
,
G.
Nowak
,
H. P.
Strunk
, and
S.
Porowski
,
Mater. Sci. Eng., B
80
,
318
(
2001
).
6.
D. R.
Ketchum
and
J. W.
Kolis
,
J. Cryst. Growth
222
,
431
(
2001
).
7.
T.
Iwahashi
,
F.
Kawamura
,
M.
Morishita
,
Y.
Kai
,
M.
Yoshimura
,
Y.
Mori
, and
T.
Sasaki
,
J. Cryst. Growth
253
,
1
(
2003
).
8.
X.
Xu
,
R. P.
Vaudo
,
C.
Loria
,
A.
Salant
,
G. R.
Brandes
, and
J.
Chaudhuri
,
J. Cryst. Growth
246
,
223
(
2002
).
9.
D.
Gogova
,
H.
Larsson
,
R.
Yakimova
,
Z.
Zolnai
,
I.
Ivanov
, and
B.
Monemar
,
Phys. Status Solidi A
200
,
13
(
2003
).
10.
P.
Vennéguès
,
B.
Beaumont
,
V.
Bousquet
,
M.
Vaille
, and
P.
Gibart
,
J. Appl. Phys.
87
,
4175
(
2000
).
11.
K. Saarinen, P. Hautojärvi, and C. Corbel, in Identification of Defects in Semiconductors, edited by M. Stavola (Academic, New York, 1998), p. 209.
12.
K.
Saarinen
,
J.
Nissilä
,
P.
Hautojärvi
,
J.
Likonen
,
T.
Suski
,
I.
Grzegory
,
B.
Lucznik
, and
S.
Porowski
,
Appl. Phys. Lett.
75
,
2441
(
1999
).
13.
A.
Kasic
,
M.
Schubert
,
S.
Einfeldt
,
D.
Hommel
, and
T. E.
Tiwald
,
Phys. Rev. B
62
,
7365
(
2000
).
14.
The image shown in Fig. 2(b) was taken close to the wafer edge where the thickness of the HVPE-GaN was reduced. Due to the used radial nonsymmetric growth setup the thickness varied between 270 and 170 μm over the 2 in. wafer. In the central area, the GaN layer thickness is ∼270 μm, as can be seen in the scanning electron microscopy image of Fig. 1(b).
15.
A. Kasic, D. Gogova, H. Larsson, C. Hemmingsson, I. Ivanov, R. Yakimova, B. Monemar, and M. Heuken (unpublished).
16.
H.
Morkoç
,
Mater. Sci. Eng., R.
33
,
135
(
2001
).
17.
J.
Jasinski
,
W.
Swider
,
Z.
Liliental-Weber
,
P.
Visconti
,
K. M.
Jones
,
M. A.
Reshchikov
,
F.
Yun
,
H.
Morkoç
,
S. S.
Park
, and
K. Y.
Lee
,
Appl. Phys. Lett.
78
,
2297
(
2001
).
18.
F.
Tuomisto
,
T.
Suski
,
H.
Teisseyre
,
M.
Krysko
,
M.
Leszczynski
,
B.
Lucznik
,
I.
Grzegory
,
S.
Porowski
,
D.
Wasik
,
A.
Witowski
,
W.
Gebicki
,
P.
Hageman
, and
K.
Saarinen
,
Phys. Status Solidi B
240
,
289
(
2003
).
19.
K.
Saarinen
,
T.
Laine
,
S.
Kuisma
,
J.
Nissilä
,
P.
Hautojärvi
,
L.
Dobrzynski
,
J. M.
Baranowski
,
K.
Pakula
,
R.
Stepniewski
,
M.
Wojdak
,
A.
Wysmolek
,
T.
Suski
,
M.
Leszczynski
,
I.
Grzegory
, and
S.
Porowski
,
Phys. Rev. Lett.
79
,
3030
(
1997
).
20.
J.
Oila
,
J.
Kivioja
,
V.
Ranki
,
K.
Saarinen
,
D. C.
Look
,
R. J.
Molnar
,
S. S.
Park
,
S. K.
Lee
, and
J. Y.
Han
,
Appl. Phys. Lett.
82
,
3433
(
2003
).
21.
D.
Gogova
,
A.
Kasic
,
H.
Larsson
,
B.
Pécz
,
R.
Yakimova
,
B.
Magnusson
,
B.
Monemar
,
F.
Tuomisto
,
K.
Saarinen
,
C. R.
Miskys
,
M.
Stutzmann
,
C.
Bundesmann
, and
M.
Schubert
,
Jpn. J. Appl. Phys., Part 1
43
,
1264
(
2004
).
22.
M.
Mayer
,
A.
Pelzmann
,
M.
Kamp
,
K. J.
Ebeling
,
H.
Teisseyre
,
G.
Nowak
,
M.
Leszczynski
,
I.
Grzegory
,
S.
Porowski
, and
G.
Karczewski
,
Jpn. J. Appl. Phys., Part 2
36
,
L1634
(
1997
).
23.
J. A.
Freitas
, Jr.
,
W. J.
Moore
,
B. V.
Shanabrook
,
G. C. B.
Braga
,
S. K.
Lee
,
S. S.
Park
, and
J. Y.
Han
,
Phys. Rev. B
66
,
233311
(
2002
).
24.
B.
Monemar
,
J. Phys.: Condens. Matter
13
,
7011
(
2001
).
25.
J. A.
Freitas
, Jr.
,
W. J.
Moore
,
B. V.
Shanabrook
,
G. C. B.
Braga
,
D. D.
Koleske
,
S. K.
Lee
,
S. S.
Park
, and
J. Y.
Han
,
Phys. Status Solidi B
240
,
330
(
2003
).
26.
J.
Oila
,
V.
Ranki
,
J.
Kivioja
,
K.
Saarinen
,
P.
Hautojärvi
,
J.
Likonen
,
J. M.
Baranowski
,
K.
Pakula
,
T.
Suski
,
M.
Leszczynski
, and
I.
Grzegory
,
Phys. Rev. B
63
,
045205
(
2001
).
27.
A.
Wysmolek
,
K. P.
Korona
,
R.
Stȩpniewski
,
J. M.
Baranowski
,
J.
Błoniarz
,
M.
Potemski
,
R. L.
Jones
,
D. C.
Look
,
J.
Kuhl
,
S. S.
Park
, and
S. K.
Lee
,
Phys. Rev. B
66
,
245317
(
2002
).
28.
K.
Kornitzer
,
T.
Ebner
,
K.
Thonke
,
R.
Sauer
,
C.
Kirchner
,
V.
Schwegler
,
M.
Kamp
,
M.
Leszczynski
,
I.
Grzegory
, and
S.
Porowski
,
Phys. Rev. B
60
,
1471
(
1999
).
29.
B. J.
Skromme
,
K. C.
Palle
,
C. D.
Poweleit
,
H.
Yamane
,
M.
Aoki
, and
F. J.
DiSalvo
,
Appl. Phys. Lett.
81
,
3765
(
2002
).
30.
S. Permogorov, in Modern Problems in Condensed Matter Science, edited by E. I. Rashba and M. D. Sturge (North-Holland, Amsterdam, 1982), Vol. 2, p. 177.
31.
V.
Kirilyuk
,
P. R.
Hageman
,
P. C. M.
Christianen
,
P. K.
Larsen
, and
M.
Zielinski
,
Appl. Phys. Lett.
79
,
4109
(
2001
).
32.
B. J.
Skromme
and
G. L.
Martinez
,
MRS Internet J. Nitride Semicond. Res.
5S1
,
W9
(
2000
).
33.
B. J.
Skromme
,
J.
Jayapalan
,
R. P.
Vaudo
, and
V. M.
Phanse
,
Appl. Phys. Lett.
74
,
2358
(
1999
).
34.
K.
Pakuła
,
A.
Wysmołek
,
K. P.
Korona
,
J. M.
Baranowski
,
R.
Stȩpniewski
,
I.
Grzegory
,
M.
Boćkowski
,
J.
Jun
,
S.
Krukowski
,
M.
Wroblewski
, and
S.
Porowski
,
Solid State Commun.
97
,
919
(
1996
).
35.
O.
Lagerstedt
and
B.
Monemar
,
J. Appl. Phys.
45
,
2266
(
1974
).
36.
S. J.
Rhee
,
S.
Kim
,
E. E.
Reuter
,
S. G.
Bishop
, and
R. J.
Molnar
,
Appl. Phys. Lett.
73
,
2636
(
1998
).
37.
P. W.
Yu
,
C. S.
Park
, and
S. T.
Kim
,
J. Appl. Phys.
89
,
1692
(
2001
).
38.
J.
Jayapalan
,
B. J.
Skromme
,
R. P.
Vaudo
, and
V. M.
Phanse
,
Appl. Phys. Lett.
73
,
1188
(
1998
).
39.
Z.
Yang
,
L. K.
Li
, and
W. I.
Wang
,
Appl. Phys. Lett.
67
,
1686
(
1995
).
40.
S. O.
Kucheyev
,
M.
Toth
,
M. R.
Phillips
,
J. S.
Williams
,
C.
Jagadish
, and
G.
Li
,
J. Appl. Phys.
91
,
5867
(
2002
).
41.
J.
Baur
,
K.
Maier
,
M.
Kunzer
,
U.
Kaufmann
,
J.
Schneider
,
H.
Amano
,
I.
Akasaki
,
T.
Detchprohm
, and
K.
Hiramatsu
,
Appl. Phys. Lett.
64
,
857
(
1994
).
42.
J.-M.
Wagner
and
F.
Bechstedt
,
Phys. Rev. B
66
,
115202
(
2002
).
43.
V. Yu.
Davydov
,
N. S.
Averkiev
,
I. N.
Goncharuk
,
D. K.
Nelson
,
I. P.
Nikitina
,
A. S.
Polkovnikov
,
A. N.
Smirnov
,
M. A.
Jacobsen
, and
O. K.
Semchinova
,
J. Appl. Phys.
82
,
5097
(
1997
).
44.
A.
Polian
,
M.
Grimsditch
, and
I.
Grzegory
,
J. Appl. Phys.
79
,
3343
(
1996
).
45.
A. R.
Goñi
,
H.
Siegle
,
K.
Syassen
,
C.
Thomsen
, and
J.-M.
Wagner
,
Phys. Rev. B
64
,
035205
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.