We investigate transport in nanotransistors in the Landauer–Büttiker formalism. A systematic linearization of the general expression for the current response yields the quantum version of the small signal equivalent circuit. This equivalent circuit can be compared with classical schemes so that explicit quantum mechanical expressions for the circuit elements can be extracted. Reducing our analysis to an effective Y-parameter description of the equivalent circuit we find the multi-terminal Büttiker formula except for one extra term. We show that this extra term is essential for the operation of transistors. An application of our theory to a simple transistor model yields a description of mismatch oscillations in the source-drain current experimentally observed in nano-transistors.

1.
D. K. Ferry and S. M. Goodnick, Transport in Nanostructures (Cambridge University Press, Cambridge, England, 1999).
2.
S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, England 1995).
3.
C. Weisbuch and B. Vinter, Quantum Semiconductor Structures (Academic Press, New York, 1991).
4.
W. C. J. Magnus and W. J. Schoenmaker, Quantum Transport in Sub-Micron Devices, Springer Series in Solid-State Sciences 137 (Springer, Berlin, 2002);
M. D.
Croitoru
,
V. N.
Gladilin
,
V. M.
Formin
,
J. T.
Devreese
,
W.
Magnus
,
W.
Schoenmaker
, and
B.
Sorée
,
J. Appl. Phys.
93
,
1230
(
2003
).
5.
A.
Svizhenko
,
M.
Anatram
,
T. R.
Govinda
,
B.
Biegel
, and
R.
Venugopal
,
J. Appl. Phys.
91
,
2343
(
2002
).
6.
R.
Venugopal
,
Z.
Ren
,
S.
Datta
, and
M. S.
Lundstrom
,
J. Appl. Phys.
92
,
3730
(
2002
).
7.
S.-H.
Lo
,
D. A.
Buchanan
,
Y.
Taur
, and
W.
Wang
,
IEEE Electron Device Lett.
18
,
209
(
1997
).
8.
L. F.
Register
,
E.
Rosenbaum
, and
K.
Yang
,
Appl. Phys. Lett.
74
,
457
(
1999
).
9.
K.
Maitra
and
N.
Bhat
,
J. Appl. Phys.
93
,
1064
(
2003
).
10.
R. Müller, Bauelemente der Halbleiter Elektronik (Springer-Verlag, Berlin, 1987), Sec. 3.8.
11.
M.
Büttiker
,
Phys. Rev. Lett.
57
,
1761
(
1986
).
12.
A.
Hartstein
,
Appl. Phys. Lett.
59
,
2028
(
1991
).
13.
H.
Ueno
,
M.
Tanaka
,
K.
Takahashi
,
M.
Miura-Mattausch
, and
Y.
Omura
,
J. Appl. Phys.
91
,
5360
(
2002
).
14.
Q.
Wang
,
N.
Carlsson
,
I.
Maximov
,
P.
Omling
,
L.
Samuelson
, and
W.
Seiffert
,
Appl. Phys. Lett.
76
,
2274
(
2000
).
15.
K.
Nishiguchi
and
S.
Oda
,
Appl. Phys. Lett.
76
,
2922
(
2000
).
16.
B. J.
van Wees
et al.,
Phys. Rev. Lett.
60
,
848
(
1988
);
A.
Wharam
et al.,
J. Phys. C
21
,
L209
(
1988
).
17.
M.
Büttiker
,
Phys. Rev. B
46
,
12
485
(
1992
).
18.
P. N.
Racec
,
E. R.
Racec
, and
U.
Wulf
,
Phys. Rev. B
65
,
193
314
(
2002
).
19.
In our transistor model described in Sec. III., the function vs(r⃗⊥;s) is given by Eq. (B1) for the source- and drain contact, s=S and s=D. For the gate contact, s=G, it is given by Eq. (B2).
20.
E.
Onac
,
J.
Kučera
, and
U.
Wulf
,
Phys. Rev. B
63
,
085319
(
2001
).
21.
C. A.
Liechti
,
IEEE Trans. Microwave Theory Tech.
MTT-24
,
279
(
1976
).
22.
J. R. Brews, in High-Speed Semiconductor Devices, edited by S. M. Sze (Wiley, New York, 1990), p. 139.
23.
E. R.
Racec
and
U.
Wulf
,
Phys. Rev. B
64
,
115
318
(
2001
).
24.
G.
Kirczenow
,
Phys. Rev. B
39
,
10
452
(
1989
).
25.
U.
Wulf
,
J.
Kučera
,
P. N.
Racec
, and
E.
Sigmund
,
Phys. Rev. B
58
,
16
209
(
1998
).
26.
See, for example, Fig. 12 in chapter 8 of Ref. 27.
27.
S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
28.
H.
Schanz
and
U.
Smilansky
,
Chaos, Solitons Fractals
5
,
1289
(
1995
).
29.
C. S.
Lent
and
D. J.
Kirkner
,
J. Appl. Phys.
67
,
6353
(
1990
).
30.
B. I. Shklovski and A. L. Efros, Electronic Properties of Doped Semiconductors, Springer Series in Solid-State Sciences 45 (Springer, Berlin, 1984), see Chap. 11 on the heavy doping limit.
31.
F.
Stern
,
Phys. Rev. B
5
,
4891
(
1972
).
32.
T.
Ando
,
J. Phys. Soc. Jpn.
51
,
3893
(
1982
).
This content is only available via PDF.
You do not currently have access to this content.