Magnetic properties of nanoparticle composites, consisting of aligned ferromagnetic nanoparticles embedded in a nonmagnetic matrix, have been determined using a model based on phenomenological approaches. Input materials parameters for this model include the saturation magnetization (Ms), the crystal anisotropy field (Hk), a damping parameter (α) that describes the magnetic losses in the particles, and the conductivity (σ) of the particles; all particles are assumed to have identical properties. Control of the physical characteristics of the composite system—such as the particle size, shape, volume fraction, and orientation—is necessary in order to achieve optimal magnetic properties (e.g., the magnetic permeability) at GHz frequencies. The degree to which the physical attributes need to be controlled has been determined by analysis of the ferromagnetic resonance (FMR) and eddy current losses at varying particle volume fractions. Composites with approximately spherical particles with radii smaller than 100 nm (for the materials parameters chosen here), packed to achieve a thin film geometry (with the easy magnetization axes of all particles aligned parallel to each other and to the surface of the thin film) are expected to have low eddy current losses, and optimal magnetic permeability and FMR behavior.

1.
M.
Scheffler
,
G.
Tröster
,
J. L.
Contrras
,
J.
Hartung
, and
M.
Menard
,
Microelectron. J.
17/3
,
11
(
2000
).
2.
T. H. Lee, in Proceedings of GAAS 99 Conference, Munich, Germany, October, 1999, p. 8.
3.
Y. Koutsoyannopoulos, Y. Papananos, S. Bantas, and C. Alemanni, Proceedings of IEEE International Symposium on Circuits and Systems, Geneva, Switzerland, May 2000, p. II-160 (unpublished).
4.
K. D. Cornett, Proceedings of Bipolar/BiCMOS Circuits and Technology Meeting, Piscataway, New Jersey, 2000, p. 187.
5.
T. J.
Klemmer
,
K. A.
Ellis
,
L. H.
Chen
,
R. B.
van Dover
, and
S.
Jin
,
J. Appl. Phys.
87
,
830
(
2000
).
6.
S.
Jin
,
W.
Zhu
,
R. B.
van Dover
,
T. H.
Tiefel
,
V.
Korenivski
, and
L. H.
Chen
,
Appl. Phys. Lett.
70
,
3161
(
1997
).
7.
M.
Yamaguchi
et al.,
J. Appl. Phys.
85
,
7919
(
1999
).
8.
J.
Huijbregtse
,
F.
Roozeboom
,
J.
Sietsma
,
J.
Donkers
,
T.
Kuiper
, and
E.
van de Riet
,
J. Appl. Phys.
83
,
1569
(
1998
).
9.
E.
van de Riet
and
F.
Roozeboom
,
J. Appl. Phys.
81
,
350
(
1997
).
10.
S.
Sun
and
D.
Weller
,
J. Magn. Soc. Jpn.
25
,
1434
(
2001
).
11.
C.
de Julian Fernandez
et al.,
Nucl. Instrum. Methods Phys. Res. B
175–177
,
479
(
2001
).
12.
U.
Weidwald
,
M.
Spasova
,
M.
Farle
,
M.
Hilgendorff
, and
M.
Giersig
,
J. Vac. Sci. Technol. A
19
,
1773
(
2001
).
13.
M.
Respaud
,
M.
Goiran
,
J. M.
Broto
,
F. H.
Yang
,
T.
Ould Ely
,
C.
Amiens
, and
B.
Chaudret
,
Phys. Rev. B
59
,
R3934
(
1999
).
14.
Chih-Wen Chen, Magnetism and Metallurgy of Soft Magnetic Materials (Dover, New York, 1986).
15.
D. M. Pozar, Microwave Engineering (Wiley, New York, 1998).
16.
Robert C. O’Handley, Modern Magnetic Materials: Principles and Applications (Wiley, New York, 1999).
17.
J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1999).
18.
This is strictly true only in materials that display uniaxial crystal anisotropy (such as Co). In the case of systems that display cubic crystal anisotropy (such as Fe), directions perpendicular to the easy axis could be other easy axes. Nevertheless, the permeability along any direction perpendicular to the saturation magnetization direction is still given by the formalism described here; hence, the nomenclature “hard” axis for directions orthogonal to the magnetization directions.
19.
In general, the permeability could be different along different hard axes. For instance, a thin film with the easy axis along the plane of the film displays the bulk permeability along a direction normal to both the easy axis and film normal, while a very low permeability is displayed along the film normal; in this case, “permeability” refers to the permeability along the former direction. In the cases of spheres and cylindrical rods with the easy axis along the rod axis (particles considered here), the permeabilities are the same along all the hard axes due to symmetry.
20.
G. D.
Mahan
,
Phys. Rev. B
38
,
9500
(
1988
).
21.
D. Rousselle, A. Berthault, O. Acher, J. P. Bouchaud, and P. G. Zerah, J. Appl. Phys. 74, (1993).
22.
K. K.
Karkkainen
,
A. H.
Sihvola
, and
K. I.
Nikoskineu
,
IEEE Trans. Geosci. Remote Sens.
38
,
1303
(
2000
).
23.
D. E.
Aspnes
,
Am. J. Phys.
50
,
704
(
1982
).
24.
D. J.
Bergman
,
Phys. Rev. Lett.
44
,
1285
(
1980
).
25.
J. C. M.
Garnett
,
Philos. Trans. R. Soc. London
203
,
385
(
1904
);
J. C. M.
Garnett
,
Philos. Trans. R. Soc. London
205
,
237
(
1906
).
26.
D. A. G.
Bruggeman
,
Ann. Phys. (Leipzig)
24
,
636
(
1935
).
27.
J. H.
Paterson
,
R.
Devine
, and
A. D. R.
Phelps
,
J. Magn. Magn. Mater.
196–197
,
394
(
1999
).
28.
M.
Le Floc’h
,
A.
Chevalier
, and
J. L.
Mattei
,
J. Phys. IV
8
,
355
(
1998
).
29.
See also Tables II and III for examples of demagnetizing factors. It should be noted that a zero demagnetizing shape factor along a particular direction implies that the demagnetizing field set up by an external field along that direction is zero.
30.
Charles Kittel, Introduction to Solid State Physics (Wiley, New York, 1995).
31.
J. L.
Mattei
and
M.
Le Floc’h
,
J. Magn. Magn. Mater.
215–216
,
589
(
2000
).
32.
A.
Chevalier
,
J. L.
Mattei
, and
M.
Le Floc’h
,
J. Magn. Magn. Mater.
215–216
,
66
(
2000
).
33.
The self-consistent solution was obtained by discretizing the volume fraction axis in steps of 0.001, and determining μeff at a particular volume fraction step from μp and A⃗ determined in the previous step; note that A⃗(c=0)=N⃗.
34.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. F. Flannery, Numerical Recipes (Cambridge University Press, Cambridge, 1992).
35.
Other considerations also impose constraints on the desired range of particle sizes; for instance, transition from single domain to multidomain particles generally imposes a more stringent constraint on the maximum size than is imposed by eddy current loss considerations, while the trasition from superparamagnetic to ferromagnetic phases imposes constraints on the minimum size (Ref. 16).
36.
T. L. Hill, An Introduction to Statistical Thermodynamics (Dover, New York, 1960).
37.
K. Binder and Dieter W. Heermann, Monte Carlo Simulation in Statistical Physics: An Introduction, in Solid-State Sciences (Springer, Berlin, 1998).
This content is only available via PDF.
You do not currently have access to this content.