We explore the alloy structures that can evolve in nonequilibrium driven systems, using two-dimensional atomistic simulations of mechanical alloying. By tailoring the intrinsic system thermodynamics we demonstrate the evolution of alloys with various states of topological and chemical ordering, including random solid solutions with both crystalline and amorphous topology, short-range ordered glasses and crystals, and segregated dual-phase systems. Our observations are broadly consistent with the experimental literature for mechanical alloying of binary systems. Further, while most of our results can be rationalized on the grounds of existing theories for either (i) glass formation and stability or (ii) nonequilibrium systems under external driving, we also observe strong correlations between topological and chemical ordering which have not yet been addressed in the context of driven systems.

1.
F.
Delogu
,
L.
Schiffini
, and
G.
Cocco
,
Philos. Mag. A
81
,
1917
(
2001
).
2.
J.
Balogh
,
L.
Bujdoso
,
D.
Kaptas
,
T.
Kemeny
, and
I.
Vincze
,
Mater. Sci. Forum
269–272
,
63
(
1998
).
3.
F.
Delogu
and
G.
Cocco
,
Mater. Sci. Eng., A
343
,
314
(
2003
).
4.
C.
Politis
and
W. L.
Johnson
,
J. Appl. Phys.
60
,
1147
(
1986
).
5.
B.
Huang
,
R. J.
Perez
,
P. J.
Crawford
,
A. A.
Sharif
,
S. R.
Nutt
, and
E. J.
Lavernia
,
Nanostruct. Mater.
5
,
545
(
1995
).
6.
N.
Ravishankar
,
K.
Abinandanan
, and
K.
Chattopadhyay
,
Mater. Sci. Eng., A
304–306
,
413
(
2001
).
7.
M.
Sherif-El Eskandarany
,
K.
Aoki
,
K.
Sumiyami
, and
K.
Suzuki
,
Metall. Trans. A
30
,
1877
(
1999
).
8.
G. H.
Chen
,
C.
Suryanarayana
, and
F. H.
Froes
,
Metall. Trans. A
26
,
1379
(
1995
).
9.
K. D.
Machado
,
J. C.
de Lima
,
C. E. M.
de Campos
,
T. A.
Grandi
, and
D. M.
Triches
,
Phys. Rev. B
66
,
094205
(
2002
).
10.
S.
Zghal
,
M. J.
Hÿtch
,
J.-P.
Chevalier
,
R.
Twesten
,
F.
Wu
, and
P.
Bellon
,
Acta Mater.
50
,
4695
(
2002
).
11.
T.
Klassen
,
U.
Herr
, and
R. S.
Averback
,
Acta Mater.
45
,
2921
(
1997
).
12.
H.
Bakker
,
G. F.
Zhou
, and
H.
Yang
,
Prog. Mater. Sci.
39
,
159
(
1995
).
13.
M.
Krasnowski
and
T.
Kulik
,
Scr. Mater.
48
,
1489
(
2003
).
14.
S.
Zghal
,
R.
Twesten
,
F.
Wu
, and
P.
Bellon
,
Acta Mater.
50
,
4711
(
2002
).
15.
J. H.
Perepezko
and
R. J.
Herbert
,
JOM
54
,
34
(
2002
).
16.
F.
Bordeaux
,
E.
Geffet
, and
R.
Yavari
,
Europhys. Lett.
12
(
1
),
63
(
1990
).
17.
M.
Atzmon
,
J. D.
Verhoeven
,
E. D.
Gibson
, and
W. L.
Johnson
,
Appl. Phys. Lett.
45
,
1052
(
1984
).
18.
L.
Thilly
,
F.
Lecouturier
, and
J.
von Stebut
,
Acta Mater.
50
,
5049
(
2002
).
19.
C.
Suryanarayana
,
Prog. Mater. Sci.
46
,
1
(
2001
).
20.
B. S.
Murty
and
S.
Ranganathan
,
Int. Mater. Rev.
43
,
101
(
1998
).
21.
M.
Abdellauoi
and
E.
Gaffet
,
Acta Mater.
44
,
725
(
1996
).
22.
T. H.
Courtney
and
D.
Maurice
,
Scr. Mater.
34
,
5
(
1996
).
23.
E.
Trizac
,
M. D.
Eldridge
, and
P. A.
Madden
,
Mol. Phys.
90
,
675
(
1997
).
24.
J.-W.
Liu
and
Y.-Q.
Ma
,
Phys. Rev. B
65
,
024102
(
2001
).
25.
C.
Abromeit
,
H.
Wollenberger
,
S.
Matsumura
, and
C.
Kinoshita
,
J. Nucl. Mater.
276
,
104
(
2000
).
26.
G.
Martin
and
P.
Bellon
,
Solid State Phys.
50
,
189
(
1997
).
27.
H.
Hsieh
and
S.
Yip
,
Phys. Rev. Lett.
59
,
2760
(
1987
).
28.
P.
Bellon
,
Phys. Rev. Lett.
81
,
4176
(
1998
).
29.
P.
Bellon
and
R. S.
Averback
,
Phys. Rev. Lett.
74
,
1819
(
1995
).
30.
H. W.
Sheng
,
G.
Wilde
, and
E.
Ma
,
Acta Mater.
50
,
475
(
2002
).
31.
J.
Lu
and
J. A.
Szpunar
,
J. Appl. Phys.
74
,
902
(
1993
).
32.
A. C.
Lund
and
C. A.
Schuh
,
Appl. Phys. Lett.
82
,
2017
(
2003
).
33.
A. C. Lund and C. A. Schuh, Acta Mater. (in press).
34.
C. Kittel and H. Kroemer, Thermal Physics (Freeman, New York, 1980).
35.
W. H. Press, S. A. Teuklosky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University Press, Cambridge, 1992).
36.
A. C.
Lund
and
C. A.
Schuh
,
Phys. Rev. Lett.
91
,
235505
(
2003
).
37.
M.
Li
,
Phys. Rev. B
62
,
13979
(
2000
).
38.
A.
Inoue
,
Acta Mater.
48
,
279
(
2000
).
39.
T.
Egami
and
Y.
Waseda
,
J. Non-Cryst. Solids
64
,
113
(
1984
).
40.
T.
Egami
,
J. Non-Cryst. Solids
205–207
,
575
(
1996
).
41.
D. B.
Miracle
and
O. N.
Senkov
,
Mater. Sci. Eng., A
347
,
50
(
2003
).
42.
D. B.
Miracle
and
O. N.
Senkov
,
J. Non-Cryst. Solids
319
,
174
(
2003
).
43.
L. C.
Damonte
,
L. A.
Medoza-Zelis
,
S.
Deledda
, and
J.
Eckert
,
Mater. Sci. Eng., A
343
,
194
(
2003
).
44.
A. I.
Frenkel
,
A. V.
Kolobov
,
I. K.
Robinson
,
J. O.
Cross
,
Y.
Maeda
, and
C. E.
Bouldin
,
Phys. Rev. Lett.
89
,
285503
(
2002
).
45.
U.
Ramamurty
,
M. L.
Lee
,
J.
Basu
, and
Y.
Li
,
Scr. Mater.
47
,
107
(
2002
).
46.
W. H.
Wang
,
R. J.
Wang
,
W. T.
Yang
,
B. C.
Wei
,
P.
Wen
,
D. Q.
Zhao
, and
M. X.
Pan
,
J. Mater. Res.
17
,
1385
(
2002
).
47.
C. A.
Schuh
and
T. G.
Nieh
,
Acta Mater.
51
,
87
(
2003
).
48.
W. L.
Bragg
and
E. J.
Williams
,
Proc. R. Soc. London, Ser. A
151
,
540
(
1935
).
49.
W. L.
Bragg
and
E. J.
Williams
,
Proc. R. Soc. London, Ser. A
145
,
699
(
1934
).
50.
H. A.
Bethe
and
H. H.
Wills
,
Proc. R. Soc. London, Ser. A
150
,
552
(
1935
).
51.
G. H.
Wannier
,
Rev. Mod. Phys.
17
,
50
(
1945
).
52.
J.
Creuze
,
F.
Berthier
,
R.
Tetot
, and
B.
Legrand
,
Phys. Rev. B
62
,
2813
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.