The oxidation of H terminated silicon surfaces is a significant and controversial problem in silicon device fabrication. Second-harmonic generation rotational anisotropy (SHG–RA) provides a convenient means to monitor the chemical state of the Si surfaces, and to follow the conversion of H terminated surface to SiO2 by oxidation as a function of time in ambient. The change in SHG–RA of Si(111)–H was shown to correlate well with the ellipsometric thickness. SHG is sensitive to the initial stage of oxidation (induction period) as well as to the logarithmic oxide growth. SHG is sensitive to the electronic properties of the surface, therefore it is a sensitive probe of the quality of H terminated Si(111) surface. Under ambient conditions, (20% relative humidity, 23 °C) the initial oxidation rate is at most 2×10−6ML/s.

1.
D. J.
Doren
,
Adv. Chem. Phys.
95
,
1
(
1996
).
2.
H.
Waltenburg
and
J. T.
Yates
,
Surface Chemistry of Silicon
95
,
1589
(
1994
).
3.
G. S.
Higashi
,
Y. J.
Chabal
,
G. W.
Trucks
, and
K.
Raghavachari
,
Appl. Phys. Lett.
56
,
656
(
1990
).
4.
R. A.
Wolkow
,
Annu. Rev. Phys. Chem.
50
,
413
(
1999
).
5.
M.
Niwano
,
J.
Kageyama
,
K.
Kurita
,
K.
Kinashi
,
I.
Takahashi
, and
N.
Miyamoto
,
J. Appl. Phys.
76
,
2157
(
1994
).
6.
M.
Morita
,
T.
Ohmi
,
E.
Hasegwa
,
M.
Kawakami
, and
K.
Suma
,
Appl. Phys. Lett.
55
,
562
(
1989
).
7.
D.
Gräf
,
M.
Grundner
,
R.
Schulz
, and
L.
Mühlhoff
,
J. Appl. Phys.
68
,
5155
(
1990
).
8.
M. R.
Houston
and
R.
Maboudian
,
J. Appl. Phys.
78
,
3801
(
1995
).
9.
G. J.
Kluth
and
R.
Maboudian
,
J. Appl. Phys.
80
,
5408
(
1996
).
10.
D.
Gräf
,
M.
Grundner
, and
R.
Schulz
,
J. Vac. Sci. Technol. A
7
,
808
(
1989
).
11.
G.
Mende
,
J.
Finister
,
D.
Flamm
, and
D.
Schulze
,
Surf. Sci.
128
,
169
(
1983
).
12.
P. A. M.
vanderHeide
,
M. J.
BaanHofman
, and
J. J.
Ronde
,
J. Vac. Sci. Technol. A
7
,
1719
(
1989
).
13.
A.
Licciardello
,
D.
Puglisi
, and
S.
Pignataro
,
Appl. Phys. Lett.
48
,
41
(
1986
).
14.
H.
Luo
,
C. E. D.
Chidsey
, and
Y.
Chabal
,
Mater. Res. Soc. Symp. Proc.
477
,
415
(
1997
).
15.
P.
Dumas
and
Y. J.
Chabal
,
Chem. Phys. Lett.
181
,
537
(
1991
).
16.
Handbook of Optical Constants of Solids, edited by E. D. Palik, (Academic, San Diego, 1998).
17.
G.
Lüpke
,
D. J.
Bottomley
, and
H. M.
van Driel
,
J. Opt. Soc. Am. B
11
,
33
(
1994
).
18.
D.
Bodlaki
and
E.
Borguet
,
Rev. Sci. Instrum.
71
,
4050
(
2000
).
19.
H. M.
van Driel
,
Phys. Rev. B
35
,
8166
(
1987
).
20.
V.
Fomenko
,
J. F.
Lami
, and
E.
Borguet
,
Phys. Rev. B
63
,
121316
(
2001
).
21.
D. Bodlaki and E. Borguet (unpublished).
22.
J. A.
Litwin
,
J. E.
Sipe
, and
H. M.
Van Driel
,
Phys. Rev. B
31
,
5543
(
1985
).
23.
J. E.
Sipe
,
D. L.
Moss
, and
H. M.
van Driel
,
Phys. Rev. B
35
,
1129
(
1987
).
24.
V.
Fomenko
,
D.
Bodlaki
,
C.
Faler
, and
E.
Borguet
,
J. Chem. Phys.
116
,
6745
(
2002
).
25.
S. A.
Mitchell
,
R.
Boukherroub
, and
S.
Anderson
,
J. Phys. Chem. B
104
,
7668
(
2000
).
26.
W. Monch, in Semiconductor Surfaces and Interfaces, Springer Series in Surface Science, Vol. 26, edited by G. Ertl et al. (Springer, Berlin, 2001).
27.
CRC Handbook of Chemistry and Physics, edited by D. R. Lide (CRC Press, Boca Raton, FL, 1997).
28.
D.
Bodlaki
,
E.
Freysz
, and
E.
Borguet
,
J. Chem. Phys.
119
,
3958
(
2003
).
29.
TheSi–SiO2System, edited by P. Balk, (Elsevier, Amsterdam, 1988).
30.
V.
Fomenko
,
C.
Hurth
,
T.
Ye
, and
E.
Borguet
,
J. Appl. Phys.
91
,
4394
(
2002
).
31.
J.
Bloch
,
J. G.
Mihaychuk
, and
H. M.
van Driel
,
Phys. Rev. Lett.
77
,
920
(
1996
).
32.
J. G.
Mihaychuk
,
J.
Bloch
,
Y.
Liu
, and
H. M.
van Driel
,
Opt. Lett.
20
,
2063
(
1995
).
33.
J. G.
Mihaychuk
,
N.
Shamir
, and
H. M.
van Driel
,
Phys. Rev. B
59
,
2164
(
1999
).
34.
N.
Shamir
,
J. G.
Mihaychuk
,
H. M.
van Driel
, and
H. J.
Kreuzer
,
Phys. Rev. Lett.
82
,
359
(
1999
).
35.
J. Fiore, V. Fomenko, D. Bodlaki, and E. Borguet (unpublished).
36.
H. Angermann, W. Henrion, and A. Roseler, in Silicon-Based Materials and Devices, edited by H. S. Nalwa (Academic, New York, 2001), pp. 268–298.
37.
F.
Lukes
,
Surf. Sci.
30
,
91
(
1971
).
38.
S. I.
Raider
,
R.
Flitsch
, and
M. J.
Palmer
,
J. Electrochem. Soc.
122
,
413
(
1975
).
39.
R. J.
Archer
,
J. Electrochem. Soc.
104
,
619
(
1957
).
40.
K.
Utani
,
T.
Suzuki
, and
S.
Adachi
,
J. Appl. Phys.
73
,
3467
(
1993
).
41.
G.
Gould
and
E. A.
Irene
,
J. Electrochem. Soc.
135
,
1535
(
1988
).
42.
R. L.
Cicero
,
M. R.
Linford
, and
C. E. D.
Chidsey
,
Langmuir
16
,
5688
(
2000
).
43.
D. E.
Aspnes
,
J. Vac. Sci. Technol.
17
,
1057
(
1980
).
44.
D. E.
Aspnes
,
Phys. Rev. B
41
,
10334
(
1990
).
45.
E. D.
Palik
,
V. M.
Bermudez
, and
O. J.
Glembocki
,
J. Electrochem. Soc.
132
,
871
(
1985
).
46.
X.
Zhang
,
E.
Garfunkel
,
Y. J.
Chabal
,
S. B.
Christman
, and
E. E.
Chaban
,
Appl. Phys. Lett.
79
,
4051
(
2001
).
47.
X.
Zhang
,
Y. J.
Chabal
,
S. B.
Christman
,
E. E.
Chaban
, and
E.
Garfunkel
,
J. Vac. Sci. Technol. A
19
,
1725
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.