Thin films of nc-TiC/a-C:H nanocomposite have been deposited by reactive magnetron sputtering at substrate bias values of −240 and −91 V. The grain size and grain separation, which together define the nanostructure, are correlated to the amount of the amorphous phase. From the size of the TiC grains measured by x-ray diffraction and the amorphous hydrogenated carbon (a-C:H) phase content determined by x-ray photoelectron spectroscopy, the mean grain separation is estimated using a simple model for the nanostructure. Films deposited at −240 V show a hardness enhancement for a-C:H phase contents in the range 10% to 30% with TiC grain sizes around 5 nm. The mean grain separation for such films was estimated to be 0.3 nm. Films with higher a-C:H phase contents still have 5 nm small grains, but their mean grain separation is larger than 0.5 nm; their hardness is thus determined by the properties of the amorphous matrix. A less pronounced hardness enhancement is observed for films deposited at −91 V. They have larger grains and larger mean gain separations and show smaller hardness values. The hardness of the films, among other mechanical properties, is controlled by the nanostructure. Raman measurements have shown that a-C:H is present in films with mean grain separation down to 0.2 nm. Coefficients of friction against steel lower than 0.3, independent of the substrate bias, are found for films with mean grain separations as low as 0.15 nm. Self-lubrication due to a-C:H can explain the observed friction behavior, although the presence of a-C:H cannot be proved by Raman spectroscopy for films with mean grain separations smaller than 0.2 nm. It is shown that the substrate bias is crucial in obtaining increased hardness of nc-TiC/a-C:H nanocomposite thin films. In contrast to the hardness of the coatings, their friction behavior is not affected by the substrate bias.

1.
S.
Vepřek
,
J. Vac. Sci. Technol. A
17
,
2401
(
1999
).
2.
A.
Niederhofer
,
P.
Nesladek
,
H.-D.
Männling
,
K.
Moto
,
S.
Vepřek
, and
M.
Jilek
,
Surf. Coat. Technol.
120/121
,
173
(
1999
).
3.
M.
Diserens
,
J.
Patscheider
, and
F.
Lévy
,
Surf. Coat. Technol.
120/121
,
158
(
1999
).
4.
C. P.
Klages
and
R.
Memming
,
Mater. Sci. Forum
52/53
,
60
(
1989
).
5.
A. A.
Voevodin
and
J. S.
Zabinski
,
Diamond Relat. Mater.
7
,
463
(
1998
).
6.
O.
Knotek
,
E.
Lugscheider
,
F.
Löffler
,
B.
Bosserhoff
, and
S.
Schmitz
,
Mater. Sci. Eng., A
209
,
394
(
1996
).
7.
T.
Zehnder
and
J.
Patscheider
,
Surf. Coat. Technol.
133/134
,
138
(
2000
).
8.
A.
Leonhardt
,
H.
Liepack
, and
K.
Bartsch
,
Surf. Coat. Technol.
133/134
,
186
(
2000
).
9.
J.
Patscheider
,
T.
Zehnder
, and
M.
Diserens
,
Surf. Coat. Technol.
146/147
,
201
(
2001
).
10.
J.
Robertson
,
Prog. Solid State Chem.
21
,
199
(
1991
).
11.
M.
Stüber
,
S.
Ulrich
,
H.
Leiste
,
A.
Kratzsch
, and
H.
Holleck
,
Surf. Coat. Technol.
116/119
,
591
(
1999
).
12.
D.
Sheeja
,
B. K.
Tay
,
X.
Shi
,
S. P.
Lau
,
C.
Daniel
,
S. M.
Krishnan
, and
L. N.
Nung
,
Diamond Relat. Mater.
10
,
1043
(
2001
).
13.
M.
Stüber
,
H.
Leiste
,
S.
Ulrich
,
H.
Holleck
, and
D.
Schild
,
Surf. Coat. Technol.
150
,
218
(
2002
).
14.
P.
Villiger
,
Ch.
Sprecher
, and
J. A.
Peters
,
Surf. Coat. Technol.
116/119
,
585
(
1999
).
15.
V.
Kulikovsky
,
A.
Tarasenko
,
F.
Fendrych
,
L.
Jastrabik
,
D.
Chvostova
,
F.
Franc
, and
L.
Soukup
,
Diamond Relat. Mater.
7
,
774
(
1998
).
16.
B.
Feng
,
D. M.
Cao
,
W. J.
Meng
,
L. E.
Rehn
,
P. M.
Baldo
, and
G. L.
Doll
,
Thin Solid Films
398/399
,
210
(
2001
).
17.
J. W.
Zou
,
K.
Schmidt
,
K.
Reichelt
, and
B.
Dischler
,
J. Appl. Phys.
67
,
487
(
1990
).
18.
M. A.
Tamor
and
W. C.
Vassell
,
J. Appl. Phys.
76
,
3823
(
1994
).
19.
A.
Richter
,
H.-J.
Scheibe
,
W.
Pompe
,
K.-W.
Brzezinka
, and
I.
Mühling
,
J. Non-Cryst. Solids
88
,
131
(
1986
).
20.
U.
Müller
,
R.
Hauert
,
B.
Oral
, and
M.
Tobler
,
Surf. Coat. Technol.
76/77
,
367
(
1995
).
21.
H.
Watanabe
,
K.
Awazu
,
H.
Yoshida
,
K.
Takahashi
, and
M.
Iwaki
,
Diamond Relat. Mater.
3
,
1117
(
1994
).
22.
J.
Robertson
,
Mater. Sci. Eng., R.
37
,
129
(
2002
).
23.
M. A.
Tamor
,
J. A.
Haire
,
C. H.
Wu
, and
K. C.
Hass
,
Appl. Phys. Lett.
54
,
123
(
1989
).
24.
M.
Yoshikawa
,
Mater. Sci. Forum
52/53
,
365
(
1989
).
25.
See, e.g., H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures (Wiley, New York, 1974).
26.
J.-E.
Sundgren
,
Thin Solid Films
128
,
21
(
1985
).
27.
H.
Sjöström
,
L.
Hultman
,
J.-E.
Sundgren
, and
L. R.
Wallenberg
,
Thin Solid Films
232
,
169
(
1993
).
28.
C. P.
Klages
and
R.
Memming
,
Surf. Coat. Technol.
49
,
543
(
1991
).
29.
W. J.
Meng
,
I.
Meletis
,
L. E.
Rehn
, and
P. M.
Baldo
,
J. Appl. Phys.
87
,
2840
(
2000
).
30.
H.
Van Swygenhoven
,
M.
Spaczer
, and
A.
Caro
,
Phys. Rev. B
60
,
22
(
1999
).
31.
J.
Schiøtz
and
K. W.
Jacobsen
,
Science
301
,
1357
(
2003
).
32.
P. H.
Mayrhofer
,
G.
Tischler
, and
C.
Mitterer
,
Surf. Coat. Technol.
142–144
,
78
(
2001
).
33.
A. A.
Voevodin
and
J. S.
Zabinski
,
Thin Solid Films
370
,
223
(
2000
).
34.
A. A.
Voevodin
,
A. W.
Phelps
,
J. S.
Zabinski
, and
M. S.
Donley
,
Diamond Relat. Mater.
5
,
1264
(
1996
).
35.
A.
Erdemir
,
C.
Bindal
,
J.
Paga
, and
P.
Wilbur
,
Surf. Coat. Technol.
76–77
,
559
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.