Boron carbide displays a rich response to dynamic compression that is not well understood. To address poorly understood aspects of behavior, including dynamic strength and the possibility of phase transformations, a series of plate impact experiments was performed that also included reshock and release configurations. Hugoniot data were obtained from the elastic limit (15–18 GPa) to 70 GPa and were found to agree reasonably well with the somewhat limited data in the literature. Using the Hugoniot data, as well as the reshock and release data, the possibility of the existence of one or more phase transitions was examined. There is tantalizing evidence, but at this time no phase transition can be conclusively demonstrated. However, the experimental data are consistent with a phase transition at a shock stress of about 40 GPa, though the volume change associated with it would have to be small. The reshock and release experiments also provide estimates of the shear stress and strength in the shocked state as well as a dynamic mean stress curve for the material. The material supports only a small shear stress in the shocked (Hugoniot) state, but it can support a much larger shear stress when loaded or unloaded from the shocked state. This strength in the shocked state is initially lower than the strength at the elastic limit but increases with pressure to about the same level. Also, the dynamic mean–stress curve estimated from reshock and release differs significantly from the hydrostate constructed from low-pressure data. Finally, a spatially resolved interferometer was used to directly measure spatial variations in particle velocity during the shock event. These spatially resolved measurements are consistent with previous work and suggest a nonuniform failure mode occurring in the material.

1.
F.
Thévenot
,
J. Eur. Ceram. Soc.
6
,
205
(
1990
).
2.
D. P. Dandekar, U.S. Army Research Laboratory, Alberdeen Proving Ground, MD, Report No. ARL-TR-2456 (2001).
3.
D. E.
Grady
,
Mech. Mater.
29
,
181
(
1998
).
4.
L. C. Chhabildas, W. D. Reinhart, and D. P. Dandekar, in Ceramic Armor Materials by Design, edited by J. W. McCauley et al. (The American Ceramics Society, Westerville, OH, 2002), pp. 269–278.
5.
D. E.
Grady
,
J. Phys. IV
4
,
C8
(
1994
).
6.
N. K.
Bourne
,
Proc. R. Soc. London, Ser. A
458
,
1999
(
2002
).
7.
D. E. Grady, Applied Research Associates report to U.S. Army TACOM-TARDEC, Warren, MI, for Contract No. DAAE07-01-P-L843 for project No. 0778 (2002).
8.
T.
Mashimo
and
M.
Uchino
,
J. Appl. Phys.
81
,
7064
(
1997
).
9.
W. M. Trott, M. D. Knudson, L. C. Chhabildas, and J. R. Asay, in Shock Compression of Condensed Matter, edited by M. D. Furnish et al. (American Institute of Physics, Melville, NY, 2000), pp. 993–998.
10.
N. S. Brar, Z. Rosenberg, and S. J. Bless, in Shock Compression of Condensed Matter, edited by S. C. Schmidt et al. (North–Holland, New York, 1992), pp. 475–478.
11.
J. H. Gieske, T. L. Aselage, and D. Emin, in Boron-Rich Solids, edited by D. Emin et al. (American Institute of Physics, New York, 1991), pp. 376–379.
12.
W.-D. Winkler and A. J. Stilp, in Shock Compression of Condensed Matter, edited by S. C. Schmidt et al. (North–Holland, New York, 1992), pp. 475–478.
13.
J. R. Asay, L. C. Chhabildas, and L. M. Barker, Sandia National Laboratories, Albuquerque, NM, Report No. SAND85-2009 (1985).
14.
J. L. Wise and L. C. Chhabildas, in Shock Waves in Condensed Matter, edited by Y. M. Gupta (Plenum, New York, 1986), pp. 441–454.
15.
L. M.
Barker
and
R. E.
Hollenbach
,
J. Appl. Phys.
43
,
4669
(
1972
).
16.
M. L. Wilkins, Lawrence Radiation Laboratory, Livermore, CA, Report No. UCRL-50460 (1968).
17.
W. H.
Gust
and
E. B.
Royce
,
J. Appl. Phys.
42
,
276
(
1971
).
18.
J. R.
Asay
,
G. R.
Fowles
,
G. E.
Duvall
,
M. H.
Miles
, and
R. F.
Tinder
,
J. Appl. Phys.
43
,
2132
(
1972
).
19.
T. Mashimo, in Shock Waves in Materials Science, edited by A. B. Sawaoka (Springer, New York, 1993), pp. 113–144.
20.
W. D. Reinhart, L. C. Chhabildas, D. E. Grady, and T. Mashimo, in Ceramic Armor Materials by Design, edited by J. W. McCauley et al. (The American Ceramics Society, Westerville, OH, 2002), pp. 233–247.
21.
W. D.
Reinhart
and
L. C.
Chhabildas
,
Int. J. Impact Eng.
29
,
601
(
2003
).
22.
M. H. Manghnani, Y. Wang, F. Li, P. Zinin, and W. Rafaniello, in Science and Technology of High Pressure, edited by M. H. Manghnani et al. (Universities Press, Hyderabad, India, 2000), pp. 945–948.
23.
J.
Lipkin
and
J. R.
Asay
,
J. Appl. Phys.
48
,
182
(
1977
).
24.
W. J.
Carter
,
High Temp. - High Press.
5
,
313
(
1973
).
25.
M. N.
Pavlovskii
,
Sov. Phys. Solid State
12
,
1737
(
1971
).
26.
S. P. Marsh, LASL Shock Hugoniot Data. (University of California Press, Berkley, CA, 1980).
27.
F. D. Murnaghan, Finite Deformation of an Elastic Solid (Wiley, New York, 1951).
28.
A. C.
Mitchell
and
W. J.
Nellis
,
J. Appl. Phys.
52
,
3363
(
1981
).
29.
V.
Domnich
,
Y.
Gogotsi
,
M.
Trenary
, and
T.
Tanaka
,
Appl. Phys. Lett.
81
,
3783
(
2002
).
30.
M.
Chen
,
J. W.
McCauley
, and
K. J.
Hempker
,
Science
299
,
1563
(
2003
).
31.
D.
Bancroft
,
E. L.
Peterson
, and
S.
Minshall
,
J. Appl. Phys.
27
,
291
(
1956
).
32.
M. E.
Kipp
and
D. E.
Grady
,
J. Phys. IV
4
,
C8
(
1994
).
33.
D. E. Grady, in Shock Waves in Condensed Matter, edited by Y. M. Gupta (Plenum, New York, 1986), pp. 589–593.
34.
J. R. Asay and L. C. Chhabildas, in Shock Waves and High-Strain-Rate Phenomena in Metals, edited by M. A. Meyers and L. E. Murr (Plenum, New York, 1981), pp. 417–431.
35.
L. C.
Chhabildas
,
J. L.
Wise
, and
J. R.
Asay
,
AIP Conf. Proc.
78
,
422
(
1982
).
36.
D. P.
Dandekar
,
W. D.
Reinhart
, and
L. C.
Chhabildas
,
J. Phys. IV
110
,
827
(
2003
).
37.
F. J. Zeigler, J. M. McGlaun, S. L. Thompson, and T. G. Trucano, Sandia National Laboratories, Albuquerque, NM, Report No. SAND87-0725C (1987).
38.
M. E. Kipp and R. J. Lawrence, Sandia National Laboratories, Albuquerque, NM, Report No. SAND81-0930 (1982).
39.
J. M.
McGlaun
,
S. L.
Thompson
, and
M. G.
Elrick
,
Int. J. Impact Eng.
10
,
351
(
1990
).
40.
G. R.
Johnson
and
T. J.
Holmquist
,
J. Appl. Phys.
85
,
8060
(
1999
).
41.
W. D. Reinhart, L. C. Chhabildas, W. M. Trott, and D. P. Dandekar, in Shock Compression of Condensed Matter, edited by Y. Horie (American Institute of Physics, Melville, New York, 2001), pp. 775–778.
42.
K. J.
McClellan
,
F.
Chu
, and
J. M.
Roper
,
J. Mater. Sci.
36
,
3403
(
2001
).
43.
P. J.
Brannon
,
C. H.
Konrad
,
R. W.
Morris
,
E. D.
Jones
, and
J. R.
Asay
,
J. Appl. Phys.
54
,
6474
(
1983
).
44.
K.
Yano
and
Y.
Horie
,
Phys. Rev. B
59
,
13672
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.