Boron carbide displays a rich response to dynamic compression that is not well understood. To address poorly understood aspects of behavior, including dynamic strength and the possibility of phase transformations, a series of plate impact experiments was performed that also included reshock and release configurations. Hugoniot data were obtained from the elastic limit (15–18 GPa) to 70 GPa and were found to agree reasonably well with the somewhat limited data in the literature. Using the Hugoniot data, as well as the reshock and release data, the possibility of the existence of one or more phase transitions was examined. There is tantalizing evidence, but at this time no phase transition can be conclusively demonstrated. However, the experimental data are consistent with a phase transition at a shock stress of about 40 GPa, though the volume change associated with it would have to be small. The reshock and release experiments also provide estimates of the shear stress and strength in the shocked state as well as a dynamic mean stress curve for the material. The material supports only a small shear stress in the shocked (Hugoniot) state, but it can support a much larger shear stress when loaded or unloaded from the shocked state. This strength in the shocked state is initially lower than the strength at the elastic limit but increases with pressure to about the same level. Also, the dynamic mean–stress curve estimated from reshock and release differs significantly from the hydrostate constructed from low-pressure data. Finally, a spatially resolved interferometer was used to directly measure spatial variations in particle velocity during the shock event. These spatially resolved measurements are consistent with previous work and suggest a nonuniform failure mode occurring in the material.
Skip Nav Destination
Article navigation
15 April 2004
Research Article|
April 15 2004
Dynamic behavior of boron carbide
T. J. Vogler;
T. J. Vogler
Sandia National Laboratories, Solid Dynamics and Energetic Materials, P.O. Box 5800, MS 1181, Albuquerque, New Mexico 87185
Search for other works by this author on:
W. D. Reinhart;
W. D. Reinhart
Sandia National Laboratories, Solid Dynamics and Energetic Materials, P.O. Box 5800, MS 1181, Albuquerque, New Mexico 87185
Search for other works by this author on:
L. C. Chhabildas
L. C. Chhabildas
Sandia National Laboratories, Solid Dynamics and Energetic Materials, P.O. Box 5800, MS 1181, Albuquerque, New Mexico 87185
Search for other works by this author on:
J. Appl. Phys. 95, 4173–4183 (2004)
Article history
Received:
September 12 2003
Accepted:
January 23 2004
Citation
T. J. Vogler, W. D. Reinhart, L. C. Chhabildas; Dynamic behavior of boron carbide. J. Appl. Phys. 15 April 2004; 95 (8): 4173–4183. https://doi.org/10.1063/1.1686902
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
A step-by-step guide to perform x-ray photoelectron spectroscopy
Grzegorz Greczynski, Lars Hultman
Piezoelectric thin films and their applications in MEMS: A review
Jinpeng Liu, Hua Tan, et al.
Tutorial: Simulating modern magnetic material systems in mumax3
Jonas J. Joos, Pedram Bassirian, et al.