(1−x)Bi(Mg1/2Ti1/2)O3–xPbTiO3 polycrystalline ceramics were investigated for potential as high-temperature piezoelectric materials. A morphotropic phase boundary (MPB) between tetragonal (T) and rhombohedral (R) ferroelectric (FE) phases, which exhibited enhanced piezoelectric activity and a ferroelectric–paraelectric phase transition at 478 °C was observed at x≈0.37. Electron diffraction patterns (x⩽0.37) contained discrete superlattice reflections at 12{hkl} positions arising from antiphase rotations of the O octahedra, consistent with R3c space group symmetry. These reflections were diffuse at the MPB (x=0.38) and absent in the T phase (x=0.5). In the unpoled state, FE R (x=0.35) ceramics revealed a polar microdomain structure whereas the T phase (x=0.5) contained classic {110} twin domain boundaries. However, poled R samples underwent a field-induced transformation to an aligned domain structure with {110} twin boundaries similar to those in the T phase. Correlations are made between structure and properties for these piezoelectric materials.

1.
S. A.
Fedulov
,
Y.
Veneutsev
,
G. A.
Zhdanov
,
E. G.
Smazheuskaya
, and
I. S.
Rez
,
Sov. Phys. Crystallogr.
7
,
62
(
1962
).
2.
V. A.
Bokov
,
N. A.
Grigoryan
,
M. F.
Bryzhina
, and
V. S.
Kazaryan
,
Bull. Acad. Sci. USSR, Phys. Ser. (Engl. Transl.)
33
,
1082
(
1969
).
3.
R.
Eitel
,
C. A.
Randall
,
T. R.
Shrout
,
P. W.
Rehrig
, and
S. E.
Park
,
Jpn. J. Appl. Phys., Part 1
40
,
5999
(
2001
).
4.
R.
Eitel
,
C. A.
Randall
,
T. R.
Shrout
, and
S. E.
Park
,
Jpn. J. Appl. Phys., Part 1
41
,
2099
(
2002
).
5.
C. A.
Randall
,
R.
Eitel
,
T. R.
Shrout
,
D. I.
Woodward
, and
I. M.
Reaney
,
J. Appl. Phys.
93
,
9271
(
2003
).
6.
G.
Shirane
,
H.
Danner
, and
R.
Pepinsky
,
Phys. Rev.
105
,
856
(
1957
).
7.
M. E. Lines and M. A. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clareden, Oxford, U.K., 1978).
8.
R.
Gevers
and
S.
Amelinckx
,
Phys. Status Solidi
13
,
499
(
1966
).
9.
C. A.
Randall
,
D. J.
Barber
, and
R. W.
Whatmore
,
J. Mater. Sci.
22
,
915
(
1987
).
10.
W.
Cao
and
C. A.
Randall
,
J. Phys. Chem. Solids
57
,
1499
(
1996
).
11.
G.
Rossetti
,
W.
Cao
, and
C. A.
Randall
,
Ferroelectrics
158
,
343
(
1994
).
12.
C. A.
Randall
,
M. G.
Matsko
,
W.
Cao
, and
A. S.
Bhalla
,
Solid State Commun.
85
,
193
(
1993
).
13.
I. M.
Reaney
,
E. L.
Colla
, and
N.
Setter
,
Jpn. J. Appl. Phys., Part 1
33
,
3984
(
1994
).
14.
A. M.
Glazer
,
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
31
,
756
(
1975
).
15.
A. M.
Glazer
,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
28
,
3384
(
1972
).
16.
H.
Zheng
,
I. M.
Reaney
,
W. E.
Lee
,
N.
Jones
, and
H.
Thomas
,
J. Am. Ceram. Soc.
85
,
2337
(
2002
).
17.
V. M.
Ischuk
and
O. V.
Presnyakova
,
Inorg. Mater. (Transl. of Neorg. Mater.)
21
,
1047
(
1985
).
18.
C. A.
Randall
,
D. J.
Barber
, and
R. W.
Whatmore
,
J. Microsc.
145
,
275
(
1987
).
19.
A. D.
Hilton
,
C. A.
Randall
,
D. J.
Barber
, and
T. R.
Shrout
,
Ferroelectrics
93
,
379
(
1989
).
20.
J.
Fousek
,
J. Appl. Phys.
40
,
135
(
1969
).
21.
J.
Sapriel
,
Phys. Rev. B
12
,
5182
(
1975
).
This content is only available via PDF.
You do not currently have access to this content.