Nanomechanical resonators can now be realized that achieve fundamental resonance frequencies exceeding 1 GHz, with quality factors (Q) in the range 103⩽Q⩽105. The minuscule active masses of these devices, in conjunction with their high Qs, translate into unprecedented inertial mass sensitivities. This makes them natural candidates for a variety of mass sensing applications. Here we evaluate the ultimate mass sensitivity limits for nanomechanical resonators operating in vacuo that are imposed by a number of fundamental physical noise processes. Our analyses indicate that nanomechanical resonators offer immense potential for mass sensing—ultimately with resolution at the level of individual molecules.

1.
M. L.
Roukes
,
Phys. World
14
,
25
(
2001
).
2.
D. S. Ballantine et al., Acoustic Wave Sensors (Academic, San Diego, CA, 1997).
3.
C. Lu, Applications of Piezoelectric Quartz Crystal Microbalances (Elsevier, London, 1984).
4.
S. S.
Narine
and
A. J.
Slavin
,
J. Vac. Sci. Technol. A
16
,
1857
(
1998
).
5.
M. Thompson and D. C. Stone, Surface-Launched Acoustic Wave Sensors: Chemical Sensing and Thin-Film Characterization (Wiley, New York, 1997).
6.
J.
Thundat
,
E. A.
Wachter
,
S. L.
Sharp
, and
R. J.
Warmack
,
Appl. Phys. Lett.
66
,
1695
(
1995
).
7.
B.
Ilic
et al.,
Appl. Phys. Lett.
77
,
450
(
2000
).
8.
Z. J.
Davis
et al.,
J. Vac. Sci. Technol. B
18
,
612
(
2000
).
9.
T.
Ono
,
X.
Li
,
H.
Miyashita
, and
M.
Esashi
,
Rev. Sci. Instrum.
74
,
1240
(
2003
).
10.
N. V.
Lavrik
and
P. G.
Datskos
,
Appl. Phys. Lett.
82
,
2697
(
2003
).
11.
K. L. Ekinci, Y. T. Yang, C. Callegari, X. M. H. Huang, and M. L. Roukes (unpublished).
12.
X. M. H.
Huang
,
C. A.
Zorman
,
M.
Mehregany
, and
M. L.
Roukes
,
Nature (London)
421
,
496
(
2003
).
13.
The SI defines 1 Dalton (Da) as 1/12 the mass of the C12 atom. 1 Da=1.66×10−27kg.
14.
W. P. Robins, Phase Noise in Signal Sources (Peter Pelegrinus Ltd., London, 1982).
15.
T. R.
Albrecht
,
P.
Grutter
,
D.
Horne
, and
D.
Rugar
,
J. Appl. Phys.
69
,
668
(
1991
).
16.
A. N.
Cleland
and
M. L.
Roukes
,
J. Appl. Phys.
92
,
2758
(
2002
).
17.
F. L.
Walls
and
J.
Vig
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
42
,
576
(
1995
).
18.
K. L.
Ekinci
,
Y. T.
Yang
,
X. M.
Huang
, and
M. L.
Roukes
,
Appl. Phys. Lett.
81
,
2253
(
2002
).
19.
R. G.
Knobel
and
A. N.
Cleland
,
Nature (London)
424
,
291
(
2003
).
20.
A. N.
Cleland
and
M. L.
Roukes
,
Sens. Actuators A
72
,
256
(
1999
).
21.
D. A. Harrington and M. L. Roukes, Caltech Technical Rep. No. CMP-106, 1994.
22.
Y.
Martin
,
C. C.
Williams
, and
H. K.
Wickramasinghe
,
J. Appl. Phys.
61
,
4723
(
1987
).
23.
We note, however, that in certain cases nonlinear phase detection schemes may offer enhanced sensitivity; see
B.
Yurke
,
D. S.
Greywall
,
A. N.
Pargellis
, and
P. A.
Busch
,
Phys. Rev. A
51
,
4211
(
1995
).
24.
Our rough criterion for 〈xc is established in the following way: in a power series expansion for elastic potential energy, 〈xc is defined to be the level at which the first term beyond the quadratic (Hooke’s law), grows to become 10% the size of the second order term.
25.
A.
Husain
,
J.
Hone
,
H. W. C.
Postma
,
X. M. H.
Huang
,
T.
Drake
,
M.
Barbic
,
A.
Scherer
, and
M. L.
Roukes
,
Appl. Phys. Lett.
83
,
1240
(
2003
).
26.
A.
Erbe
et al.,
Appl. Phys. Lett.
77
,
3102
(
2000
).
27.
The effect of the added mass on a doubly clamped beam depends upon the position of its adsorption and the vibratory mode shape that is employed.
28.
G. Z.
Sauerbrey
,
Z. Phys.
155
,
206
(
1959
).
29.
See, for example, C. V. Heer, Statistical Mechanics, Kinetic Theory and Stochastic Processes (Academic, New York, 1972).
30.
A. C.
Cleland
and
M. L.
Roukes
,
Nature (London)
392
,
160
(
1998
).
31.
Analysis of the more realistic case, i.e., a resonator with a noisy VCO “drive,” is straightforward and yields no additional, noteworthy insights. Noise in the drive can be referred to the output of the resonator’s transducer, in effect lowering the overall dynamic range.
32.
Y. K.
Yong
and
J. R.
Vig
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
36
,
452
(
1989
).
33.
Y. K.
Yong
and
J. R.
Vig
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
37
,
543
(
1990
).
34.
A. Zangwill, Physics at Surfaces (Cambridge University Press, New York, 1988).
35.
We will only consider the low pressure limit. The expressions will not be valid for high pressures, where the dissipation is due to the viscous forces of the fluid. Yet, the crossover to the viscous regime for small, high frequency resonators takes place at higher pressures. This crossover pressure can be determined by comparing the sound wavelength in the medium to the mean free path of the gas molecules. The mean free path, λmfp, in a gaseous environment with molecules modeled as hard spheres is given by λmfp=kBT/2πd02p, where d0 is the sphere diameter, T the temperature, and p the pressure of the gas; kB is Boltzmann’s constant. Wavelength of the sound waves around the operation frequency of the resonator can be estimated from a linear dispersion. One can then determine that for a nanomechanical resonator at 1 GHz, this crossover pressure is larger than atmospheric pressure. For more details, see, for example, V. B. Braginsky, V. P. Mitrofanov, and V. I. Panov, Systems with Small Dissipation (The University of Chicago Press, Chicago, 1985).
36.
W.
Gerlach
,
Naturwissenschaften
15
,
15
(
1927
).
37.
G. E.
Uhlenbeck
and
S.
Goudsmit
,
Phys. Rev.
34
,
145
(
1929
).
38.
K.
Kokubun
,
M.
Hirata
,
M.
Ono
,
H.
Murakami
, and
Y.
Toda
,
J. Vac. Sci. Technol. A
5
,
2450
(
1987
).
39.
F. R.
Blom
,
S.
Bouwstra
,
M.
Elwenspoek
, and
J. H. J.
Fluitman
,
J. Vac. Sci. Technol. B
10
,
19
(
1992
).
40.
In the presence of feedback, this consideration is modified to involve effective (closed-loop) Q, rather than the natural (open-loop) Q, since the former will then determine the bandwidth.
41.
Y. T. Yang et al. (unpublished).
This content is only available via PDF.
You do not currently have access to this content.