Superconducting three-Josephson-junction flux qubits (3JFQB) are possible candidates for the basic elements of a (future) scalable quantum computer. An important design parameter is the capacitance of their Josephson junctions. We estimate the capacitance per junction area (specific capacitance) of junctions typically used in 3JFQBs, i.e., of Al/AlOx/Al junctions with 5–10 Å thick oxide layers. The capacitance is obtained by analyzing resonant voltage steps in the current–voltage characteristics of specifically designed dc superconducting quantum interference devices (SQUIDs). The junction area is deduced from scanning electron microscope images. We find that the specific capacitance of our junctions is Cs=100±25 fFm2. Finally we compare this result to capacitance estimates obtained with 3JFQB microwave spectroscopy and find that the SQUID resonance method provides a much higher accuracy.

1.
Y.
Makhlin
,
G.
Schön
, and
A.
Shnirman
,
Rev. Mod. Phys.
73
,
357
(
2001
).
2.
J. E.
Mooij
,
T. P.
Orlando
,
L.
Levitov
,
L.
Tian
,
C. H.
van der Wal
, and
S.
Lloyd
,
Science
285
,
1063
(
1999
).
3.
T. P.
Orlando
,
J. E.
Mooij
,
L.
Tian
,
C. H.
van der Wal
,
L.
Levitov
,
S.
Lloyd
, and
J. J.
Mazo
,
Phys. Rev. B
60
,
15398
(
1999
).
4.
J. R.
Friedmann
,
V.
Patel
,
W.
Chen
,
S. K.
Tolpygo
, and
J. E.
Lukens
,
Nature (London)
406
,
43
(
2000
).
5.
G.
Blatter
,
V. B.
Geshkenbein
, and
L. B.
Ioffe
,
Phys. Rev. B
63
,
174511
(
2001
).
6.
H.
Tanaka
,
Y.
Sekine
,
S.
Saito
, and
H.
Takayanagi
,
Supercond. Sci. Technol.
14
,
1161
(
2001
).
7.
H.
Tanaka
,
Y.
Sekine
,
S.
Saito
, and
H.
Takayanagi
,
Physica C
368
,
300
(
2002
).
8.
H.
Takayanagi
,
H.
Tanaka
,
S.
Saito
, and
H.
Nakano
,
Phys. Scr., T
T102
,
95
(
2002
).
9.
I.
Chiorescu
,
Y.
Nakamura
,
C. J. M. P.
Harmans
, and
J. E.
Mooij
,
Science
299
,
1869
(
2003
).
10.
P.
Wahlgren
,
P.
Delsing
, and
D. B.
Haviland
,
Phys. Rev. B
52
,
2293
(
1995
).
11.
A. Barone and G. Paternò, Physics and Applications of the Josephson Effect (Wiley-Interscience, New York, 1982).
12.
D. B.
Tuckerman
and
J. H.
Magerlein
,
Appl. Phys. Lett.
37
,
241
(
1980
).
13.
J. H.
Magerlein
,
IEEE Trans. Magn.
MAG 17
,
286
(
1981
).
14.
M. Tinkham, Introduction to Superconductivity (McGraw–Hill, New York, 1996).
15.
Y.
Chen
,
J. Low Temp. Phys.
65
,
133
(
1986
).
16.
V.
Ambegaokar
and
A.
Baratoff
,
Phys. Rev. Lett.
10
,
486
(
1963
).
17.
C. H.
van der Wal
,
A. C. J.
ter Haar
,
F. K.
Wilhelm
,
R. N.
Schouten
,
C. J. P. M.
Harmans
,
T. P.
Orlando
,
S.
Lloyd
, and
J. E.
Mooij
,
Science
290
,
773
(
2000
).
18.
G. J.
Dolan
,
Appl. Phys. Lett.
31
,
337
(
1977
).
19.
M.
Kamon
,
M. J.
Tsuk
, and
J. K.
White
,
IEEE Trans. Microwave Theory Tech.
42
,
1750
(
1994
);
The program FastHenry can be downloaded from 〈http://www.srware.com〉
20.
T. P. Orlando and K. A. Delin, Foundations of Applied Superconductivity (Addison-Wesley, New York, 1991).
21.
K.
Nabors
and
J. K.
White
,
IEEE Trans. Comput.-Aided Des.
10
,
1447
(
1991
);
The program FastCap can be downloaded from 〈http://www.srware.com〉
22.
H. H.
Zappe
and
B. S.
Landman
,
J. Appl. Phys.
49
,
344
(
1978
).
This content is only available via PDF.
You do not currently have access to this content.