Charge transfer dynamics on the surface of single-wall carbon nanotube sheets is investigated using in situ Raman spectroscopy in order to understand the actuation mechanism of an electrochemical actuator and to determine associated parameters. We built an actuator from single-wall carbon nanotube mat and studied its actuation in several alkali metal (Li, Na, and K) and alkaline earth (Ca) halide and sulfate solutions in order to clarify the role of counterion as mobile ions in the film. The variation of bonding with applied potential was monitored using in situ Raman spectroscopy. This is because Raman can detect changes in C–C bond length: the radial breathing mode at ∼190 cm−1 varies inversely with the nanotube diameter, and the G band at ∼1590 cm−1 varies with the axial bond length. In addition, the intensities of both the modes vary with the emptying/depleting or filling of the bonding and antibonding states due to electrochemical charge injection. We discussed the variation of peak height and wave numbers of these modes providing valuable information concerning electrochemical charge injection on the carbon nanotube mat surface. We found in-plane microscopic compressive strain (∼−0.25%) and the equivalent charge transfer per carbon atom (fc∼−0.005) as an upper bound for the actuators studied hereby. It is demonstrated that though the present analysis does comply with the proposition for the actuation principle made earlier, the quantitative estimates are significantly lower if compared with those of reported values. Furthermore, the extent of variation, i.e., coupled electro-chemo-mechanical response of single-wall carbon nanotubes (SWNT) mat depended upon the type of counterion used (Group I versus Group II). The cyclic voltammetry and ac electrochemical impedance spectroscopy results were described briefly, which help to demonstrate well-developed capacitive behavior of SWNT mat and to estimate the specific capacitances as well. Summarizing, the impact of these findings on the suitability of such material for use in electrochemical devices such as actuators is emphasized.

1.
M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, in Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996).
2.
M.
Terrones
,
F.
Banhart
,
N.
Grobert
,
J.-C.
Charlier
,
H.
Terrones
, and
P. M.
Ajayan
,
Phys. Rev. Lett.
89
,
075505
(
2002
);
F.
Banhart
,
Nano Lett.
1
,
329
(
2001
);
Ph.
Avouris
,
Science
292
,
705
(
2001
).
3.
M. M. J.
Treacy
,
T. W.
Ebbesen
, and
J. M.
Gibson
,
Nature (London)
381
,
678
(
1996
).
4.
J. M.
Bonnard
,
J. P.
Savetat
,
T.
Stockli
,
W. A.
de Heer
,
L.
Forró
, and
A.
Chatelain
,
Appl. Phys. Lett.
73
,
918
(
1998
).
5.
B.
Gao
,
A.
Kelinhammes
,
X. P.
Tang
,
C.
Bower
,
Y.
Wu
, and
O.
Zhou
,
Chem. Phys. Lett.
307
,
153
(
1999
);
J.
Liu
et al.,
Science
280
,
1253
(
1998
).
6.
R. H.
Baughman
,
A. A.
Zakhidov
, and
W. A.
de Heer
,
Science
297
,
787
(
2002
).
7.
C. L.
Kane
and
E. J.
Mele
,
Phys. Rev. Lett.
78
,
1932
(
1997
).
8.
A.
Thess
,
R.
Lee
,
P.
Nikolaev
,
H.
Dai
,
P.
Petit
,
J.
Robert
,
C.
Xu
,
Y. H.
Lee
,
S. G.
Kim
,
A. G.
Rinzler
,
D. T.
Colbert
,
G. E.
Scuseria
,
D.
Tománek
,
J. E.
Fischer
, and
R. E.
Smalley
,
Science
273
,
483
(
1996
).
9.
U. D.
Venkateswara
,
A. M.
Rao
,
E.
Richter
,
M.
Menon
,
A.
Rinzler
,
R. E.
Smalley
, and
P. C.
Eklund
,
Phys. Rev. B
59
,
10
928
(
1999
), and references therein.
10.
C.
Journet
,
W. K.
Maser
,
P.
Bernier
,
A.
Loiseau
,
M. L.
Chapelle
,
S.
Lefrant
,
P.
Deniard
,
R.
Lee
, and
J. E.
Fisher
,
Nature (London)
388
,
756
(
1997
).
11.
I. J. Busch-Vishniac, in Electromechanical Sensors and Actuators, 2nd ed. (Springer, New York, 1999).
12.
R. H.
Baughman
,
Synth. Met.
78
,
339
(
1996
).
13.
N.
Rajalakshmi
,
K. S.
Dhathathreyan
, and
A.
Govindraj
,
Electrochim. Acta
45
,
4511
(
2000
).
14.
C.
Nützenadel
,
A.
Züttel
,
D.
Chartouni
, and
L.
Schlapbach
,
Electrochem. Solid-State Lett.
2
,
30
(
1999
).
15.
S. M.
Lee
,
K. S.
Park
,
Y. C.
Choi
,
Y. S.
Park
,
J. M.
Bok
,
D. J.
Bae
,
K. S.
Nahm
,
Y. G.
Choi
,
S. C.
Yu
,
N. G.
Kim
,
T.
Frauenheim
, and
Y. H.
Lee
,
Synth. Met.
113
,
209
(
2000
).
16.
F.
Leroux
,
K.
Metenier
,
S.
Gautier
,
E.
Frackowiak
,
S.
Bonnamy
, and
F.
Beguin
,
J. Power Sources
81–82
,
317
(
1999
);
G. T.
Wu
,
C. S.
Wang
,
X. B.
Zhang
,
H. S.
Wang
,
Z. F.
Qi
,
P. M.
He
, and
W. Z.
Li
,
J. Electrochem. Soc.
146
,
1696
(
1999
);
E.
Frackowiak
,
S.
Gautier
,
H.
Gaucher
,
S.
Bonnamy
, and
F.
Beguin
,
Carbon
37
,
61
(
1999
).
17.
B. E. Conway, in Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum, New York 1999).
18.
M.
Hughes
,
G. Z.
Chen
,
M. S. P.
Shaffer
,
D. J.
Fray
, and
A. H.
Windle
,
Chem. Mater.
14
,
1610
(
2002
);
C.
Niu
,
E. K.
Sichel
,
R.
Hoch
,
D.
Moy
, and
H.
Tennent
,
Appl. Phys. Lett.
70
,
1480
(
1997
).
19.
R. H.
Baughman
,
C.
Cui
,
A. A.
Zakhidov
,
Z.
Iqbal
,
J. N.
Barisci
,
G. M.
Spinks
,
G. G.
Wallace
,
A.
Mazzoldi
,
D.
De Rossi
,
A. G.
Rinzler
,
O.
Jaschinski
,
S.
Roth
, and
M.
Kertesz
,
Science
284
,
1340
(
1999
).
20.
E.
Hubner
,
N. A.
Fleck
, and
M. F.
Ashby
,
Proc. R. Soc. London, Ser. A
453
,
2185
(
1997
).
21.
M. M. J.
Treacy
,
T. W.
Ebbesen
, and
J. M.
Gibson
,
Nature (London)
381
,
678
(
1996
).
22.
T. W.
Ebbesen
,
H. J.
Lezec
,
H.
Hiura
,
J. W.
Bennett
,
H. F.
Ghaemi
, and
T.
Thio
,
Nature (London)
382
,
54
(
1996
).
23.
C. P.
An
,
Z. V.
Zardeny
,
Z.
Iqbal
,
G.
Spinks
,
R. H.
Baughman
, and
A.
Zakhidov
,
Synth. Met.
116
,
411
(
2001
).
24.
A.
Claye
,
S.
Rahman
,
J. E.
Fischer
,
A.
Sirenko
,
G. U.
Sumanasekera
, and
P. C.
Eklund
,
Chem. Phys. Lett.
333
,
16
(
2001
).
25.
R. S.
Lee
,
H. J.
Kim
,
J. E.
Fischer
,
A.
Thess
, and
R. E.
Smalley
,
Nature (London)
388
,
255
(
1997
).
26.
L.
Kavan
,
P.
Rapta
,
L.
Dunsch
,
M. J.
Bronikowski
,
P.
Willis
, and
R. E.
Smalley
,
J. Phys. Chem. B
105
,
10764
(
2001
);
L.
Kavan
,
P.
Rapta
, and
L.
Dunsch
,
Chem. Phys. Lett.
328
,
363
(
2000
).
27.
P.
Corio
,
P. S.
Santos
,
V. W.
Brar
,
G. G.
Samsonidze
,
S. G.
Chou
, and
M. S.
Dresselhaus
,
Chem. Phys. Lett.
370
,
675
(
2003
), and references therein.
28.
P.
Petit
,
C.
Mathis
,
C.
Journet
, and
P.
Bernier
,
Chem. Phys. Lett.
305
,
370
(
1999
).
29.
L.
Pietronero
and
S.
Strassler
,
Phys. Rev. Lett.
47
,
593
(
1981
);
R. H.
Baughman
,
N. S.
Murthy
,
H.
Eckhardt
, and
M.
Kertesz
,
Phys. Rev. B
46
,
10
515
(
1992
).
30.
D. E.
Nixon
and
G. S.
Perry
,
J. Phys. C
2
,
1732
(
1969
);
J. E.
Fischer
,
H. J.
Kim
, and
V. B.
Cajipe
,
Phys. Rev. B
36
,
4449
(
1987
);
W. A.
Kamitakahara
,
J. L.
Zaresky
, and
P. C.
Eklund
,
Synth. Met.
12
,
301
(
1985
).
31.
P.
Kim
and
C. M.
Lieber
,
Science
286
,
2148
(
1999
).
32.
Y.
Zhang
and
S.
Iijima
,
Phys. Rev. Lett.
82
,
3472
(
1999
).
33.
See http//:www.nanoledge.com
34.
D. W.
Marquardt
,
J. Soc. Ind. Appl. Math.
11
,
431
(
1963
).
35.
M.
Hughes
,
M. S. P.
Shaffer
,
A. C.
Renouf
,
C.
Singh
,
G. Z.
Chen
,
D. J.
Fray
, and
A. H.
Windle
,
Adv. Mater. (Weinheim, Ger.)
14
,
382
(
2002
).
36.
A. S.
Claye
,
J. E.
Fischer
,
C. B.
Huffman
,
A. G.
Rinzler
, and
R. E.
Smalley
,
J. Electrochem. Soc.
147
,
2845
(
2000
).
37.
F.
Salver-Disma
,
C.
Lenain
,
B.
Beaudoin
,
L.
Aymard
, and
J.-M.
Tarascon
,
Solid State Ionics
98
,
145
(
1997
).
38.
J. R.
Dahn
,
T.
Zheng
,
Y.
Liu
, and
J. S.
Xue
,
Science
270
,
5236
(
1995
).
39.
Y.
Chabre
,
D.
Djurabo
,
M.
Armand
,
W.
Romanow
,
N.
Coustel
,
J. P.
McCauley
Jr.
,
J. E.
Fischer
, and
A. B.
Smith
,
J. Am. Chem. Soc.
114
,
764
(
1992
).
40.
C. H. Hamann, A. Hamnett, and W. Vielstich, in Electrochemistry (Wiley-VCH, New York, 1998), Chap. 5.
41.
L.
Kavan
,
P.
Rapta
, and
L.
Dunsch
,
Chem. Phys. Lett.
328
,
363
(
2000
).
42.
C.
Liu
,
A. J.
Bard
,
F.
Wudl
,
I.
Heitz
, and
J. R.
Heath
,
Electrochem. Solid-State Lett.
2
,
577
(
1999
).
43.
J. R.
Wood
,
M. D.
Frogley
,
E. R.
Meurs
,
A. D.
Prins
,
T.
Peijs
,
D. J.
Dubstan
, and
H. D.
Wagner
,
J. Phys. Chem. B
103
,
10388
(
1999
), and references therein.
44.
A. M.
Rao
,
P. C.
Eklund
,
S.
Bandow
,
A.
Thess
, and
R. E.
Smalley
,
Nature (London)
388
,
257
(
1999
).
45.
S. Gupta, Ph.D. thesis, 2002, Microfisch Michigan Inc. (unpublished).
46.
A. M.
Rao
,
E.
Richter
,
S.
Bandow
,
B.
Chase
,
P. C.
Eklund
,
K. A.
Williams
,
S.
Fang
,
K. R.
Subbaswamy
,
M.
Menon
,
A.
Thess
, and
R. E.
Smalley
,
Science
275
,
187
(
1997
).
47.
M. S.
Dresselhaus
and
P. C.
Eklund
,
Adv. Phys.
49
,
705
(
2000
).
48.
S.
Reich
,
H.
Jantoljak
, and
C.
Thomsen
,
Phys. Rev. B
61
,
R13
389
(
2000
).
49.
H.
Kuzmany
,
W.
Plank
,
M.
Hulman
,
Ch.
Kramberger
,
A.
Gruneis
,
Th.
Pichler
,
H.
Peterlik
,
H.
Kataura
, and
Y.
Achiba
,
Eur. Phys. J. B
22
,
307
(
2001
).
50.
A. C.
Ferrari
and
J.
Robertson
,
Phys. Rev. B
61
,
14095
(
2001
).
51.
S.
Reich
,
C.
Thomsen
, and
P.
Ordejón
,
Phys. Rev. B
65
,
153407
(
2002
).
52.
A.
Jorio
,
A. G. Souza
Filho
,
G.
Dresselhaus
,
M. S.
Dresselhaus
,
A. K.
Swan
,
M. S.
Ünlü
,
B. B.
Goldberg
,
M. A.
Pimenta
,
J. H.
Hafner
,
C. M.
Lieber
, and
R.
Saito
,
Phys. Rev. B
65
,
155412
(
2002
).
53.
G. S. Duesburg (unpublished).
54.
H.
Greischer
,
R.
McIntyre
,
D.
Scherson
, and
W.
Storck
,
J. Phys. Chem.
91
,
1930
(
1987
).
55.
Y.
Oren
,
I.
Glatt
,
A.
Livnat
,
O.
Kafri
, and
A.
Soffer
,
J. Electroanal. Chem.
187
,
59
(
1985
).
56.
M. S. Dresselhaus and G. Dresselhaus, in Light Scattering in Graphite Intercalation Compounds, Topics in Applied Physics Series Vol. 53 edited by M. Cardona and G. Güntherodt (Springer, Berlin, 1982), p. 3;
M. S.
Dresselhaus
and
G.
Dresselhaus
,
Adv. Phys.
30
,
139
(
1981
).
57.
J.
Sandler
,
M. S. P.
Shaffer
,
A. H.
Windle
,
M. P.
Halsall
,
M. A.
Montes-Morán
,
C. A.
Cooper
, and
R. J.
Young
,
Phys. Rev. B
67
,
035417
(
2003
), and references therein.
58.
M.
Endo
,
C.
Kim
,
T.
Karaki
,
Y.
Nishimura
,
M. J.
Matthews
,
S. D. M.
Brown
, and
M. S.
Dresselhaus
,
Carbon
37
,
561
(
1997
).
59.
C. T.
Chan
,
W. A.
Kamitakahara
,
K. M.
Ho
, and
P. C.
Eklund
,
Phys. Rev. Lett.
58
,
1528
(
1987
);
L.
Pietronero
and
S.
Strässler
,
Phys. Rev. Lett.
47
,
593
(
1981
).
60.
O.
Lourie
and
H. D.
Wagner
,
J. Mater. Res.
13
,
2418
(
1998
).
61.
R. S.
Lee
,
H. J.
Kim
,
J. E.
Fischer
,
A.
Thess
, and
R. E.
Smalley
,
Nature (London)
388
,
255
(
1997
).
62.
Graphite Intercalation Compounds: Structure and Dynamics, edited by H. Zabel and S. A. Solin Springer Series in Materials Science, Vol. 14 (Springer, Berlin, 1990), p. 1.
63.
J. E.
Fischer
,
H. J.
Krim
, and
V. B.
Cajipe
,
Phys. Rev. B
36
,
4449
(
1987
).
64.
Y.
Bar-Cohen
,
S.
Sheritt
, and
S.-S.
Lih
,
Proc. SPIE
4329
,
319
(
2001
), and references therein.
65.
S.
Nemat-Nasser
and
Y.
Wu
,
J. Appl. Phys.
93
,
5255
(
2003
).
66.
E.
Frackowiak
,
K.
Méténier
,
V.
Bertagna
, and
F.
Béguin
,
Appl. Phys. Lett.
77
,
2421
(
2000
).
67.
C.
Niu
,
E. K.
Sichel
,
R.
Hoch
,
D.
Moy
, and
H.
Tennet
,
Appl. Phys. Lett.
70
,
1480
(
1997
).
68.
J. R. Miller, in ECS Symposium Proceedings, 1996, edited by F. Delnick and M. Tomkiewicz, p. 246.
This content is only available via PDF.
You do not currently have access to this content.