ZnS:Mn was produced in nanocrystalline form by a chemical method using polyvinylpyroledone as a chemical capping agent. Mn was stoichiometrically substituted for Zn in ZnS. The manganese (Mn) concentration was varied over its whole solid solution limit in ZnS, i.e., from 0 to 40%. In the high concentration regime this material formed may be thus written as nanocrystalline (Zn, Mn)S. The material formed is thus a wide gap diluted magnetic semiconductor. The characterized material was in powder form. X-ray diffraction was used to estimate the crystallite size and to confirm formation of the material in single phase. The average crystallite size obtained was about 2 nm. The material remained cubic over the whole Mn solid solution range. The room temperature photoluminescence (PL) when deconvoluted using a Gaussian fit showed two extra peaks in nanocrystalline ZnS:Mn when compared to pure nanocrystalline ZnS, which had only two peaks. Mn incorporation significantly enhanced the PL intensity in nanocrystalline ZnS:Mn (400–850 nm range) thereby suggesting Mn2+ induced PL. The red shift of the two new peaks with increase in Mn2+ concentration can be attributed to the change in band structure due to the formation of ZnS:Mn alloy. These extra peaks were due to (a) various Mn2+ transitions in the ZnS host, (b) related to S as the nearest neighbor of Mn2+ ion in the nanocrystallite (due to the high concentration of Mn2+), or (c) Mn–Mn interactions at high Mn concentrations. However, our prepared pure MnS samples did not show any photoluminescence at room temperature. So it is concluded that the observed PL is Mn2+ induced in the nanocrystalline ZnS host.

1.
Y. L.
Soo
,
Z. H.
Ming
,
S. W.
Huang
,
Y. H.
Kao
,
R. N.
Bhargava
, and
D.
Gallagher
,
Phys. Rev. B
50
,
7602
(
1994
);
R. N.
Bhargava
,
D.
Gallagher
,
X.
Hong
, and
A.
Nurmikko
,
Phys. Rev. Lett.
72
,
412
(
1994
).
2.
H.
Yang
,
Z.
Wang
,
L.
Song
,
M.
Zao
,
Y.
Chen
,
K.
Dou
,
J.
Yu
, and
L.
Wang
,
Mater. Chem. Phys.
47
,
249
(
1997
).
3.
A. D.
Dinsmore
,
D. S.
Hsu
,
S. B.
Qadri
,
J. C.
Cross
,
T. A.
Kennedy
,
H. F.
Gray
, and
B. B.
Ratna
,
J. Appl. Phys.
88
,
4985
(
2000
).
4.
H.
Yang
,
P. H.
Holloway
, and
B. B.
Ratna
,
J. Appl. Phys.
93
,
586
(
2003
).
5.
P.
Yang
,
M.
Lu
,
C.
Song
,
L.
Liu
,
D.
Xu
,
D.
Yuan
, and
X.
Cheng
,
J. Non-Cryst. Solids
311
,
99
(
2002
).
6.
K. M.
Yeung
,
W. S.
Tsang
,
C. L.
Mak
, and
K. H.
Wong
,
J. Appl. Phys.
92
,
3636
(
2002
).
7.
R. D.
Yang
,
S.
Tripathy
,
F. E. H.
Tay
,
I. M.
Gan
, and
S. J.
Chua
,
J. Vac. Sci. Technol. B
21
,
984
(
2003
).
8.
T. A.
Kennedy
,
E. R.
Glasser
,
P. B.
Klien
, and
R. N.
Bhargava
,
Phys. Rev. B
52
,
14
365
(
1995
).
9.
C.
Lan
,
K.
Hong
,
W.
Wang
, and
G.
Wong
,
Solid State Commun.
125
,
455
(
2003
) (and references quoted therein).
10.
I. O.
Juarez
,
P. G.
Jimenez
,
G. T.
Delgado
,
R. C.
Perez
,
O. J.
Sandoral
,
B.
Chau
, and
S. J.
Sandoral
,
Mater. Res. Bull.
37
,
1749
(
2002
);
S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1999).
11.
J. K. Furdyna and J. Kossut, eds., Semiconductors and Semimetals, Vol. 25 (Academic Press, New York, 1988).
12.
J.
Lee
,
S.
Lee
,
S.
Cho
,
S.
Kim
,
I. Y.
Park
, and
Y. D.
Choi
,
Mater. Chem. Phys.
77
,
254
(
2002
).
13.
W.
Chen
,
R.
Sammynaiken
,
Y.
Huang
,
J. O.
Malm
,
R.
Wallenberg
,
J. O.
Bovin
,
V.
Zwiller
, and
N.
Kotov
,
J. Appl. Phys.
89
,
1120
(
2001
).
14.
O.
Goede
,
W.
Heimbrodt
, and
W.
Weinhold
,
Phys. Status Solidi B
136
,
K49
(
1986
).
15.
O.
Goede
,
W.
Heimbrodt
,
W.
Weinhold
,
E.
Schnurer
, and
H. G.
Eberle
,
Phys. Status Solidi B
143
,
511
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.