The controllability and promotion of the production of metallic nanotubes by imposing an external electric field are examined based on a numerical simulation. The electronic states of the π electrons are described by the Hückel method and their electric interactions are self-consistently taken into account through the Poisson equation. The frontier electron density at both ends of the nanotubes with open ends is evaluated. For armchair tubes, the frontier electron density at both ends becomes a maximum near the electric field of 1 V/nm. The ratio of the frontier density of the armchair tubes to zigzag tubes is 3:1 near this electric field. The frontier density for zigzag tubes shows a maximum in the absence of an external electric field, while, by imposing an electric field, the frontier density decreases. The optimal intensity of a direct current electric field to efficiently make metallic nanotubes is determined.

1.
S.
Iijima
,
Nature (London)
56
,
354
(
1991
).
2.
R.
Saito
,
M.
Fujita
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
,
Phys. Rev. B
46
,
1804
(
1992
).
3.
K.
Tanaka
,
K.
Okahara
,
M.
Okada
, and
T.
Yamabe
,
Chem. Phys. Lett.
191
,
469
(
1991
).
4.
N.
Hamada
,
S.
Sawada
, and
A.
Oshiyama
,
Phys. Rev. Lett.
68
,
1579
(
1992
).
5.
K.
Fukui
,
T.
Yonezawa
,
C.
Nagata
, and
H.
Shingu
,
J. Chem. Phys.
22
,
1433
(
1954
).
6.
K.
Fukui
,
Acc. Chem. Res.
4
,
57
(
1971
).
7.
A.
Thess
,
R.
Lee
,
P.
Nikolaev
,
H.
Dai
,
P.
Petit
,
J.
Robert
,
C.
Xu
,
Y. H.
Lee
,
S. G.
Kim
,
A. G.
Rinzler
,
D. T.
Colbert
,
G. E.
Scuseria
,
D.
Tombnek
,
J. E.
Fischer
, and
R. E.
Smalley
,
Science
273
,
483
(
1996
).
8.
Y.
Saito
,
M.
Okuda
,
N.
Fujimoto
,
T.
Yoshikawa
,
M.
Tomita
, and
T.
Hayashi
,
Jpn. J. Appl. Phys., Part 2
33
,
L526
(
1994
).
9.
Y.
Kumeda
,
Y.
Fukuhiro
,
T.
Taketsugu
, and
T.
Hirano
,
Chem. Phys. Lett.
333
,
29
(
2001
).
10.
Y.
Kumeda
,
T.
Taketsugu
, and
T.
Hirano
,
Chem. Phys. Lett.
360
,
149
(
2002
).
11.
F.
Léonard
and
T.
Tersoff
,
Appl. Phys. Lett.
81
,
4835
(
2002
).
12.
M. F.
Lin
and
D. S.
Chuu
,
Phys. Rev. B
56
,
4996
(
1997
).
13.
A.
Kasuya
,
Y.
Sasaki
,
Y.
Saito
,
K.
Tohji
, and
Y.
Nishina
,
Phys. Rev. Lett.
78
,
4434
(
1997
).
14.
J. M.
Cowley
,
P.
Nikolaev
,
A.
Thess
, and
R. E.
Smalley
,
Chem. Phys. Lett.
265
,
379
(
1997
).
15.
R. R.
He
,
H. Z.
Jin
,
J.
Zhu
,
Y. J.
Yan
, and
X. H.
Chen
,
Chem. Phys. Lett.
298
,
170
(
1998
).
16.
X.
Liu
,
T.
Pichler
,
M.
Knupfer
,
M. S.
Golden
,
J.
Fink
,
H.
Kataura
, and
Y.
Achiba
,
Phys. Rev. B
66
,
045411
(
2002
).
17.
L.-C.
Qin
,
S.
Iijima
,
H.
Kataura
,
Y.
Maniwa
,
S.
Suzuki
, and
Y.
Achiba
,
Chem. Phys. Lett.
268
,
101
(
1997
).
18.
D.
Bernaerts
,
A.
Zettle
,
N. G.
Chopra
,
A.
Thess
, and
R. E.
Smalley
,
Solid State Commun.
105
,
149
(
1998
).
19.
J.-F.
Colomer
,
J.-M.
Benoit
,
C.
Stephan
,
S.
Lefrant
,
G. V.
Tendeloo
, and
J. B.
Nagy
,
Chem. Phys. Lett.
345
,
11
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.