We use classical molecular dynamics simulations to study the interfacial resistance for heat flow between a carbon nanotube and octane liquid. We find a large value of the interfacial resistance associated with weak coupling between the rigid tube structure and the soft organic liquid. Our simulation demonstrates the key role played by the soft vibration modes in the mechanism of the heat flow. These results imply that the thermal conductivity of carbon-nanotube polymer composites and organic suspensions will be limited by the interface thermal resistance and are consistent with recent experiments.

1.
E. T.
Thostenson
,
Z.
Ren
, and
T. W.
Chou
,
Compos. Sci. Technol.
61
,
1899
(
2000
).
2.
P.
Kim
,
L.
Shi
,
A.
Majumdar
, and
P. L.
McEuen
,
Phys. Rev. Lett.
87
,
215502
(
2001
).
3.
S.
Berber
,
Y.-K.
Kwon
, and
D.
Tománek
,
Phys. Rev. Lett.
84
,
4613
(
2000
).
4.
M. J.
Biercuk
et al.,
Appl. Phys. Lett.
80
,
2767
(
2002
).
5.
S. T.
Huxtable
et al.,
Nat. Mater.
2
,
731
(
2003
).
6.
S. U. S.
Choi
et al.,
Appl. Phys. Lett.
79
,
2252
(
2001
).
7.
H.
Xie
,
H.
Lee
,
W.
Youn
, and
M.
Choi
,
J. Appl. Phys.
94
,
4967
(
2003
).
8.
J.
Che
,
T.
Cagin
, and
W. A.
Godard
III
,
Nanotechnology
11
,
65
(
2000
).
9.
L. Shi, University of Texas, Austin (private communication).
10.
P.
Keblinski
,
S. R.
Phillpot
,
S. U.-S.
Choi
, and
J. A.
Eastman
,
Int. J. Heat Mass Transfer
45
,
855
(
2002
).
11.
Q. Z.
Xue
,
Phys. Lett. A
307
,
313
(
2003
).
12.
P. L.
Kapitza
,
Zh. Eksp. Teor. Fiz.
11
,
1
(
1941
);
P. L.
Kapitza
,
Sov. J. Phys. JETP
4
,
121
(
1941
).
13.
D. A.
Neeper
and
J. R.
Dillinger
,
Phys. Rev. A
135
,
1028
(
1964
).
14.
C.
Schmidt
and
E.
Umlauf
,
J. Low Temp. Phys.
22
,
597
(
1976
).
15.
C.
Schmidt
,
Phys. Rev. B
15
,
4187
(
1977
).
16.
D. S.
Matsumoto
,
C. L.
Reynolds
, and
A. C.
Anderson
,
Phys. Rev. B
16
,
3303
(
1977
).
17.
L. J.
Challis
,
K.
Dransfeld
, and
J.
Wilks
,
Proc. R. Soc. London, Ser. A
260
,
31
(
1961
).
18.
T.
Nakayama
,
J. Phys. C
18
,
L667
(
1985
).
19.
A. D.
Lapin
,
Akust. Zh.
15
,
387
(
1970
);
A. D.
Lapin
,
Sov. Phys. Acoust.
15
,
387
(
1970
).
20.
F. W.
Sheard
and
G. A.
Toombs
,
J. Phys. Colloq.
33-C4
,
C4
(
1972
).
21.
N. S.
Shiren
,
Phys. Rev. Lett.
47
,
1466
(
1981
).
22.
I. M.
Khalatnikov
and
I. N.
Adamenko
,
Zh. Eksp. Teor. Fiz.
63
,
746
(
1972
);
I. M.
Khalatnikov
and
I. N.
Adamenko
,
Sov. Phys. JETP
36
,
391
(
1973
).
23.
E. T.
Swartz
and
R. O.
Pohl
,
Appl. Phys. Lett.
51
,
200
(
1987
).
24.
E. T.
Swartz
and
R. O.
Pohl
,
Rev. Mod. Phys.
61
,
605
(
1989
).
25.
D. P. H.
Hasselman
and
L. F.
Johnson
,
J. Compos. Mater.
21
,
508
(
1987
).
26.
C. W.
Nan
,
R.
Birringer
,
D. R.
Clarke
, and
H.
Gleiter
,
J. Appl. Phys.
81
,
6692
(
1997
).
27.
J. C. Maxwell, A Treatise on Electricity and Magnetism (Oxford University Press, New York, 1904).
28.
S. Shenogin and R. Ozisik, American Physical Society March Meeting, Austin, TX, 2003, paper C1.023.
29.
Discover®, Forcefield Simulation User Guide (Molecular Simulations, San Diego, 1996).
30.
H.
Sun
,
S. J.
Mumby
,
J. R.
Maple
, and
A. T.
Hagler
,
J. Am. Chem. Soc.
116
,
2978
(
1994
).
31.
CRC Handbook of Chemistry and Physics (Chemical Rubber Publishing, Boca Raton, FL, 1985–1986).
32.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1987).
33.
P. K.
Schelling
and
P.
Keblinski
,
Phys. Rev. B
68
,
035425
(
2003
).
34.
M. S.
Dresserhaus
and
P. C.
Eklud
,
Adv. Phys.
49
,
705
(
2000
).
35.
V. N.
Popov
and
V. E.
Van Doren
,
Phys. Rev. B
61
,
3078
(
2000
).
36.
D.
Danailov
,
P.
Keblinski
,
S.
Nayak
, and
P. M.
Ajayan
,
J. Nanosci. Nanotechnol.
2
,
503
(
2002
).
37.
J.
Hone
et al.,
Appl. Phys. A: Mater. Sci. Process.
74
,
339
(
2002
).
38.
R. J.
Stoner
and
H. J.
Maris
,
Phys. Rev. B
48
,
16373
(
1993
).
39.
R. M.
Costescu
,
M. A.
Wall
, and
D. G.
Cahill
,
Phys. Rev. B
67
,
054302
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.