As-sputtered and melt-quenched amorphous structures together with the laser-induced crystallized structure of Ge-Sb-Te thin films were investigated using high-resolution electron microscopy (HREM) and nanobeam electron diffraction (NBED). Each of the Ge-Sb-Te thin films was embedded in a four-layered stack, which is the same as the layered structure of phase-change optical disks. Cross-sectional HREM revealed crystalline atomic clusters in the melt-quenched amorphous layer at a greater frequency than in the as-sputtered amorphous layer. Autocorrelation function analysis of the HREM images revealed similarity between the structures of atomic ordered regions in the amorphous phase and that of crystalline Sb. Atomic pair-distribution functions derived from halo NBED intensity analysis indicated that the atomic neighbor correlations developed more in the melt-quenched amorphous phase than in the as-sputtered phase. The development of locally ordered regions is considered to be closely related to the differences in optical properties and crystallization behaviors between these two amorphous phases.

1.
J.
Feinleib
,
J.
deNeufville
,
S. C.
Moss
, and
S. R.
Ovshinsky
,
Appl. Phys. Lett.
18
,
254
(
1971
).
2.
N.
Yamada
,
E.
Ohno
,
K.
Nishiuchi
, and
N.
Akahira
,
J. Appl. Phys.
69
,
2849
(
1991
).
3.
M.
Horie
,
T.
Ohno
,
N.
Nobukuni
,
K.
Kiyono
,
T.
Hashizume
, and
M.
Mizuno
,
Proc. SPIE
4342
,
76
(
2002
).
4.
H.
Iwasaki
,
M.
Harigaya
,
O.
Nonoyama
,
Y.
Kageyama
,
M.
Takahashi
,
K.
Yamada
,
H.
Deguchi
, and
Y.
Ide
,
Jpn. J. Appl. Phys.
32
,
5241
(
1993
).
5.
M. H. R.
Lankhorst
,
L.
van Pieterson
,
M.
van Schijndel
,
B. A. J.
Jacobs
, and
J. C. N.
Rijpers
,
Jpn. J. Appl. Phys.
42
,
863
(
2003
).
6.
Y. C.
Her
and
Y. S.
Hsu
,
Jpn. J. Appl. Phys.
42
,
804
(
2003
).
7.
T.
Matsunaga
and
N.
Yamada
,
Jpn. J. Appl. Phys.
41
,
1674
(
2002
).
8.
T.
Matsunaga
,
Y.
Umetani
, and
N.
Yamada
,
Phys. Rev. B
64
,
184116
(
2001
).
9.
P. K.
Khulbe
,
T.
Hurst
,
M.
Horie
, and
M.
Mansuripur
,
Appl. Opt.
41
,
6220
(
2002
).
10.
Y.
Hirotsu
,
M.
Ishimaru
,
T.
Ohkubo
,
T.
Hanada
, and
M.
Sugiyama
,
J. Electron Microsc.
50
,
435
(
2001
).
11.
N.
Mori
,
T.
Oikawa
,
Y.
Harada
, and
J.
Miyahara
,
J. Electron Microsc.
39
,
433
(
1990
).
12.
T.
Ohkubo
and
Y.
Hirotsu
,
Phys. Rev. B
67
,
094201
(
2003
).
13.
J. Frank, Computer Processing of Electron Microscopic Images (Springer, Berlin, 1980), p. 187.
14.
M. Horie, T. Ohno, K. Kiyono, and M. Kubo, in Proceedings of 13th Symposium Phase Change Optical Information Storage (The Society of Phase Change Recording, Shizuoka, 2001), p. 20.
15.
P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals, Ohio, 1985), Vol. 3.
16.
T. B. Massalski, Binary Alloy Phase Diagrams, 2nd ed. (American Society for Metals, Ohio, 1990), Vol. 3.
17.
M.
Naito
,
M.
Ishimaru
,
Y.
Hirotsu
, and
M.
Takashima
,
Jpn. J. Appl. Phys.
42
,
L1158
(
2003
).
18.
V. H.
Richter
,
H.
Berckhemer
, and
G.
Breitling
,
Z. Naturforsch.
9A
,
236
(
1954
).
19.
K.
Tani
,
N.
Yiwata
,
M.
Harigaya
,
S.
Emura
, and
Y.
Nakata
,
J. Synchrotron Radiat.
8
,
749
(
2001
).
20.
G. F.
Zhou
,
H. J.
Borg
,
J. C. N.
Rijper
,
M. H. R.
Lankhorst
, and
J. J. L.
Horikx
,
Proc. SPIE
4090
,
108
(
2000
).
21.
M. Naito, M. Ishimaru, Y. Hirotsu, and M. Takashima, J. Non-Crystalline Solids (in press).
This content is only available via PDF.
You do not currently have access to this content.