A nanofluid is a fluid containing suspended solid particles, with sizes on the order of nanometers. Normally, nanofluids have higher thermal conductivities than their base fluids. Therefore, it is of interest to predict the effective thermal conductivity of such a nanofluid under different conditions, especially since only limited experimental data are available. We have developed a technique to compute the effective thermal conductivity of a nanofluid using Brownian dynamics simulation, which has the advantage of being computationally less expensive than molecular dynamics, and have coupled that with the equilibrium Green–Kubo method. By comparing the results of our calculation with the available experimental data, we show that our technique predicts the thermal conductivity of nanofluids to a good level of accuracy.

1.
For a recent review, see P. E. Phelan, P. Bhattacharya, and R. S. Prasher, Annu. Rev. Heat Transfer (in press).
2.
J. A.
Eastman
,
S. U. S.
Choi
,
S.
Li
,
W.
Yu
, and
L. J.
Thompson
,
Appl. Phys. Lett.
78
,
718
(
2001
).
3.
X.
Wang
,
X.
Xu
, and
S. U. S.
Choi
,
J. Thermophys. Heat Transfer
13
,
474
(
1999
).
4.
H.
Xie
,
J.
Wang
,
T.
Xi
,
Y.
Liu
,
F.
Ai
, and
Q.
Wu
,
J. Appl. Phys.
91
,
4568
(
2002
).
5.
S.
Lee
,
S. U. S.
Choi
,
S.
Li
, and
J. A.
Eastman
,
J. Heat Transfer
121
,
280
(
1999
).
6.
Y.
Xuan
and
Q.
Li
,
Int. J. Heat Fluid Flow
21
,
58
(
2000
).
7.
P.
Keblinski
,
S. R.
Phillpot
,
S. U. S.
Choi
, and
J. A.
Eastman
,
Int. J. Heat Fluid Flow
45
,
855
(
2002
).
8.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Science, Oxford, 1987), pp. 4–6, 23–32, 168–172, 257–269.
9.
D. L.
Ermak
and
J. A.
McCammon
,
J. Chem. Phys.
69
,
1352
(
1978
).
10.
S.
Melle
,
O. G.
Calderon
,
M. A.
Rubio
, and
G. G.
Fuller
,
J. Non-Newtonian Fluid Mech.
102
,
135
(
2002
).
11.
S.
Mohebi
,
N.
Jamasbi
, and
J.
Liu
,
Phys. Rev. E
54
,
5407
(
1996
).
12.
D. J.
Klingenberg
,
S. F.
Van
, and
C. F.
Zukoski
,
J. Chem. Phys.
91
,
7888
(
1989
).
13.
Y. H.
Lee
,
R.
Biswas
,
C. M.
Soukoulis
,
C. Z.
Wang
,
C. T.
Chan
, and
K. M.
Ho
,
Phys. Rev. B
43
,
6573
(
1991
).
14.
D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1976), pp. 512–522.
15.
C. Hoheisel, Theoretical Treatment of Liquids and Liquid Mixtures (Elsevier, Amsterdam, 1993), pp. 208–211.
16.
J. W. Dally, W. F. Riley, and K. G. McConnell, Instrumentation for Engineering Measurements (Wiley, New York, 1992), pp. 533–537.
17.
R. L.
Hamilton
and
O. K.
Crosser
,
I & EC Fundamentals
1
,
187
(
1962
).
This content is only available via PDF.
You do not currently have access to this content.