Ferroelectric domain structures of (001)SrBi2Nb2O9 epitaxial films, investigated using both transmission electron microscopy and phase-field simulations, are reported. Experiment and numerical simulation both reveal that the domain structures consist of irregularly shaped domains with curved domain walls. It is shown that the elastic contribution to domain structures can be neglected in SrBi2Nb2O9 due to its small ferroelastic distortion, less than 0.0018%. Two-beam dark-field imaging using reflections unique to domains of each of the two 90° polarization axes reveal the domain structure. Phase-field simulation is based on the elastic and electrostatic solutions obtained for thin films under different mechanical and electric boundary conditions. The effects of ferroelastic distortion and dielectric constant on ferroelectric domains are systematically analyzed. It is demonstrated that electrostatic interactions which favor straight domain walls are not sufficient to overcome the domain wall energy which favors curved domains in SrBi2Nb2O9.

1.
C. A.
Paz de Araujo
,
J. D.
Cuchiaro
,
L. D.
McMillan
,
M. C.
Scott
, and
J. F.
Scott
,
Nature (London)
374
,
627
(
1995
).
2.
T.
Sumi
,
Y.
Judai
,
K.
Hirano
,
T.
Ito
,
T.
Mikawa
,
M.
Takeo
,
M.
Azuma
,
S.
Hayashi
,
Y.
Uemoto
,
K.
Arita
,
T.
Nasu
,
Y.
Nagano
,
A.
Inoue
,
A.
Matsuda
,
E.
Fuji
,
Y.
Shimada
, and
T.
Otsuki
,
Jpn. J. Appl. Phys., Part 1
35
,
1516
(
1996
).
3.
J.
Lettieri
,
M. A.
Zurbuchen
,
Y.
Jia
,
D. G.
Schlom
,
S. K.
Streiffer
, and
M. E.
Hawley
,
Appl. Phys. Lett.
76
,
2937
(
2000
).
4.
J.
Lettieri
,
M. A.
Zurbuchen
,
Y.
Jia
,
D. G.
Schlom
,
S. K.
Streiffer
, and
M. E.
Hawley
,
Appl. Phys. Lett.
77
,
3090
(
2000
).
5.
M. A.
Zurbuchen
,
J.
Lettieri
,
Y.
Jia
,
D. G.
Schlom
,
S. K.
Streiffer
, and
M. E.
Hawley
,
J. Mater. Res.
16
,
489
(
2001
).
6.
M. A.
Zurbuchen
,
J.
Lettieri
,
S. K.
Streiffer
,
Y. F.
Jia
,
M. E.
Hawley
,
X. Q.
Pan
,
A. H.
Carim
, and
D. G.
Schlom
,
Integr. Ferroelectr.
33
,
27
(
2001
).
7.
T.
Suzuki
,
Y.
Nishi
,
M.
Fujimoto
,
K.
Ishikawa
, and
H.
Funakubo
,
Jpn. J. Appl. Phys., Part 2
38
,
L1265
(
1999
).
8.
K.
Ishikawa
,
H.
Funakubo
,
K.
Saito
,
T.
Suzuki
,
Y.
Nishi
, and
M.
Fujimoto
,
J. Appl. Phys.
87
,
8018
(
2000
).
9.
M. A.
Zurbuchen
,
G.
Asayama
,
D. G.
Schlom
, and
S. K.
Streiffer
,
Phys. Rev. Lett.
88
,
107601
(
2002
).
10.
Y.
Ding
,
J. S.
Liu
, and
Y. N.
Wang
,
Appl. Phys. Lett.
76
,
103
(
2000
).
11.
X. H.
Zhu
,
J. M.
Zhu
,
S. H.
Zhou
,
Q.
Li
,
Z. G.
Liu
, and
N. B.
Ming
,
Appl. Phys. Lett.
78
,
799
(
2001
).
12.
F. Jona and G. Shirane, Ferroelectric Crystals (Pergamon, Oxford, 1962).
13.
E. Fatuzzo and W. J. Merz, Ferroelectricity (North–Holland, Amsterdam, 1967).
14.
M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977).
15.
J. F.
Scott
,
Ferroelectr. Rev.
1
,
1
(
1998
).
16.
Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, edited by K.-H. Hellwege and A. M. Hellwege (Springer-Verlag, Berlin, 1981), Vol. 16a, p. 360, Group III (New Series).
17.
J.
Harada
,
T.
Pederson
, and
Z.
Barnea
,
Acta Crystallogr., Sect. A: Foundations of Crystallography
26
,
336
(
1970
).
18.
A. D.
Rae
,
J. G.
Thompson
,
R. L.
Withers
, and
A. C.
Willis
,
Acta Crystallogr., Sect. B: Struct. Sci.
46
,
474
(
1990
).
19.
Polarization lies almost entirely along a* (8% along c).
S. E.
Cummins
and
L. E.
Cross
,
J. Appl. Phys.
39
,
2268
(
1968
).
20.
Y.
Barad
,
J.
Lettieri
,
C. D.
Theis
,
D. G.
Schlom
,
J. C.
Jiang
, and
X. Q.
Pan
,
Appl. Phys. Lett.
89
,
1387
(
2001
).
21.
A. D.
Rae
,
J. G.
Thompson
, and
R. L.
Withers
,
Acta Crystallogr., Sect. B: Struct. Sci.
48
,
418
(
1992
).
22.
International Tables for Crystallography, Vol. A: Space-Group Symmetry, edited by T. Hahn (Kluwer Academic, Dordrecht, 1996), p. 783.
23.
Y. Z. Wang and L. Q. Chen, in Method in Materials Research, edited by E. N. Kaufmann (Wiley, New York, 2000).
24.
L. Q. Chen, “Phase-field Models for Microstructure Evolution”, Annual Review of Materials Research 32, 113-140 (2002).
25.
S.
Nambu
and
D. A.
Sagala
,
Phys. Rev. B
50
,
5838
(
1994
).
26.
H. L.
Hu
and
L. Q.
Chen
,
J. Am. Ceram. Soc.
81
,
492
(
1998
).
27.
S.
Semenovskaya
and
A. G.
Khachaturyan
,
J. Appl. Phys.
83
,
5125
(
1998
).
28.
Y. L.
Li
,
S. Y.
Hu
,
Z. K.
Liu
, and
L. Q.
Chen
,
Appl. Phys. Lett.
78
,
3878
(
2001
).
29.
Y. L.
Li
,
S. Y.
Hu
,
Z. K.
Liu
, and
L. Q.
Chen
,
Acta Mater.
50
,
395
(
2002
).
30.
Y. L.
Li
,
S. Y.
Hu
,
Z. K.
Liu
, and
L. Q.
Chen
,
Appl. Phys. Lett.
81
,
427
(
2002
).
31.
J.
Lettieri
,
Y.
Jia
,
M.
Urbanik
,
C. I.
Weber
,
J. P.
Maria
,
D. G.
Schlom
,
H.
Li
,
R.
Ramesh
,
R.
Uecker
, and
P.
Reiche
,
Appl. Phys. Lett.
73
,
2923
(
1998
).
32.
J.
Lettieri
,
Y.
Jia
,
S. J.
Fulk
,
D. G.
Schlom
,
M. E.
Hawley
, and
G. W.
Brown
,
Thin Solid Films
379
,
64
(
2000
).
33.
R. E.
Newnham
,
R. W.
Wolfe
, and
J. F.
Dorrian
,
Mater. Res. Bull.
6
,
1029
(
1971
).
34.
Landolt–Börnstein: Numerical Data and Functional Relationships in Science and Technology, edited by K.-H. Hellwege and A. M. Hellwege (Springer-Verlag, Berlin, 1981), Vol. 16a, p. 233, Group III (New Series).
35.
The comma in the subscript indicates that the partial derivative is to be taken with respect to the spatial coordinate index that follows the comma. For example, φ,i=∂φ/∂xi,φ,11=∂2φ/∂x12, and Di,i=(∂D1/∂x1)+(∂D2/∂x2)+(∂D3/∂x3). This notation is used throughout this paper.
36.
L. Q.
Chen
and
J.
Shen
,
Comput. Phys. Commun.
108
,
147
(
1998
).
37.
M. J.
Haun
,
E.
Furman
,
S. J.
Jang
,
H. A.
McKinstry
, and
L. E.
Cross
,
J. Appl. Phys.
62
,
3331
(
1987
).
38.
κ33=175±5. This was measured on an epitaxial (001)SrBi2Nb2O9/(001) (La,Sr)2CuO4/(001)SrTiO3 film at a measurement frequency of 1 kHz. J. Lettieri, Y. Jia, C. I. Weber, D. G. Schlom, H. Li, R. Ramesh, G. W. Brown, M. E. Hawley, R. Uecker, and P. Reiche, presented at the 5th International Workshop on Oxide Electronics, College Park, MD, 1998 (unpublished).
This content is only available via PDF.
You do not currently have access to this content.