Nanoparticles of Ni1−xZnxFe2O4(x=0.0, 0.25, 0.50, 0.75, and 1.0) in the size range of 6–12 nm have been synthesized by chemical precipitation followed by hydrothermal treatment. A strong correlation between the particle size and the zinc concentration has been identified. Mössbauer studies on these systems show that the cation distribution not only depends on the particle size but also on the preparation route. There are indications that in the present nanophase samples Fe occupies more tetrahedral sites as compared to the normal occupancy in the spinel ferrite structure. The occupancy returns to normal values after heat treatment at 1000 °C. Low-temperature Mössbauer studies indicate a significant amount of deviation of cation distribution from their bulk preferences.

1.
K.
Ishino
and
Y.
Narumiya
,
Ceram. Bull.
66
,
1469
(
1987
).
2.
J. Smit and H. P. J. Wijn, Ferrites—Physical Properties of Ferrimagnetic Oxides in Relation to Their Technical Applications (N. V. Philip’s Gloeilampenfabrieken, Eindhoven, Holland, 1959), Chap. VIII, pp. 136–176.
3.
A. S.
Albuquerque
,
J. D.
Ardisson
,
W. A. A.
Macedo
, and
M. C. M.
Alves
,
J. Appl. Phys.
87
,
4352
(
2000
).
4.
P. J.
van der Zaag
,
P. J.
van der Valk
, and
M. T.
Rekveldt
,
Appl. Phys. Lett.
69
,
2927
(
1996
).
5.
P. C.
Fannin
,
S. W.
Charles
, and
J. L.
Dormann
,
J. Magn. Magn. Mater.
201
,
98
(
1999
).
6.
P. G.
Bercoff
and
H. R.
Bertorello
,
J. Magn. Magn. Mater.
213
,
56
(
2000
).
7.
K.
Haneda
,
Can. J. Phys.
65
,
1233
(
1987
).
8.
H. H.
Hamdeh
,
J. C.
Ho
,
S. A.
Oliver
,
R. J.
Willey
,
G.
Olivery
, and
G.
Busca
,
J. Appl. Phys.
81
,
1851
(
1997
).
9.
G. F.
Goya
and
H. R.
Rechenberg
,
J. Magn. Magn. Mater.
203
,
141
(
1999
).
10.
C.
Upadhyay
,
H. C.
Verma
,
C.
Rath
,
K. K.
Sahoo
,
S.
Anand
,
R. P.
Das
, and
N. C.
Mishra
,
J. Alloys Compd.
326
,
94
(
2001
).
11.
C.
Rath
,
N. C.
Mishra
,
S.
Anand
,
R. P.
Das
,
K. K.
Sahu
,
C.
Upadhyay
, and
H. C.
Verma
,
Appl. Phys. Lett.
76
,
475
(
2000
).
12.
C.
Upadhyay
,
D.
Mishra
,
H. C.
Verma
,
S.
Anand
, and
R. P.
Das
,
J. Magn. Magn. Mater.
260
,
188
(
2003
).
13.
B.
Window
,
J. Phys. E
4
,
401
(
1971
).
14.
H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1974).
15.
R. F. Strickland Constable, Kinetics and Mechanism of Crystallization (Academic, New York, 1968).
16.
A.
Navrotsky
and
O. J.
Kleppa
,
J. Inorg. Nucl. Chem.
30
,
479
(
1968
).
17.
L. K.
Leung
,
B. J.
Evans
, and
A. H.
Morrish
,
Phys. Rev. B
8
,
29
(
1973
).
18.
L.
Wang
and
F. S.
Li
,
J. Magn. Magn. Mater.
223
,
233
(
2001
).
19.
H.
Gleiter
,
Prog. Mater. Sci.
33
,
223
(
1989
).
20.
Y. G.
Ma
,
M. Z.
Jin
,
M. L.
Liu
,
G.
Chen
,
Y.
Sui
,
Y.
Tian
,
G. J.
Zhang
, and
Y. Q.
Jia
,
Mater. Chem. Phys.
65
,
79
(
2000
).
21.
A. S.
Albuquerque
,
J. D.
Ardisson
,
W. A. A.
Macedo
,
J. L.
López
,
R.
Paniago
, and
A. I. C.
Persiano
,
J. Magn. Magn. Mater.
226
,
1379
(
2001
).
22.
S.
Mørup
,
J. Magn. Magn. Mater.
37
,
39
(
1983
).
23.
C. N.
Chinnasamy
,
A.
Narayanasamy
,
N.
Ponpandian
,
K.
Chattopadhyay
,
K.
Shinoda
,
B.
Jeyadevan
,
K.
Tohji
,
K.
Nakatsuka
,
T.
Furubayashi
, and
I.
Nakatani
,
Phys. Rev. B
63
,
184108
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.