In this article, we investigate how the friction coefficient is affected by the presence of a liquid layer in between a self-affine rough surface and a sliding rubber surface. The liquid layer will reduce energy dissipation from the small surface asperities and cavities of lateral sizes smaller than the healing length ζ and, therefore, will reduce the coefficient of friction. Significant coefficients of friction are attained for small healing lengths ζ (≪ξ with ξ the in-plane roughness correlation length). Finally, it is shown that the effect of the substrate roughness exponent H becomes less important especially for large healing lengths (ζ⩾ξ).

1.
D. F. Moore, The Friction and Lubrication of Elastomer (Pergamon, Oxford, 1972);
M.
Barguis
,
Mater. Sci. Eng.
73
,
45
(
1985
);
A. D.
Roberts
,
Rubber Chem. Technol.
65
,
673
(
1992
).
2.
K. A.
Grosch
,
Proc. R. Soc. London, Ser. A
274
,
21
(
1963
).
3.
J. A. Greenwood, in Fundamentals of Friction, Macroscopic, and Microscopic Processes, edited by I. L. Singer and H. M. Polack (Kluwer, Dordrecht, 1992);
J. A.
Greenwood
and
J. B. P.
Williamson
,
Proc. R. Soc. London, Ser. A
295
,
300
(
1966
).
4.
B. N. J. Persson, Sliding Friction: Physical Principles and Applications, 2nd ed. (Springer, Heidelberg, 2000).
5.
B. N. J.
Persson
,
J. Chem. Phys.
115
,
3840
(
2001
).
6.
B. B. Mandelbrodt, The Fractal Geometry of Nature (Freeman, New York, 1982).
7.
J.
Krim
and
G.
Palasantzas
,
Int. J. Mod. Phys. B
9
,
599
(
1995
);
Y.-P. Zhao, G.-C. Wang, and T.-M. Lu, Characterization of Amorphous and Crystalline Rough Surfaces-Principles and Applications, Experimental Methods in the Physical Science, Vol. 37 (Academic, New York, 2001);
P. Meakin, Fractals, Scaling, and Growth Far from Equilibrium (Cambridge University Press, Cambridge, 1998);
G.
Palasantzas
and
J. T. M.
De Hosson
,
Phys. Rev. E
67
,
021604
/
1
(
2003
).
8.
F.
Mugele
and
M.
Salmeron
,
Phys. Rev. Lett.
84
,
5796
(
2000
).
9.
S.
Zilberman
,
B. N. J.
Persson
,
A.
Nitzan
,
F.
Mugele
, and
M.
Salmeron
,
Phys. Rev. E
63
,
055103
(
2001
).
10.
A. D.
Roberts
,
J. Phys. D
4
,
423
(
1971
).
11.
B. N. J.
Persson
and
P.
Ballone
,
J. Chem. Phys.
112
,
9524
(
2000
).
12.
A. D.
Roberts
,
J. Phys. D
4
,
433
(
1971
).
13.
F.
Plouraboue
,
P.
Kurowski
,
J.-P.
Hulin
, and
S.
Roux
,
Phys. Rev. E
51
,
1675
(
1995
).
14.
M.
Kardar
and
J. O.
Indekeu
,
Europhys. Lett.
12
,
161
(
1990
);
G.
Palasantzas
,
Phys. Rev. B
51
,
14612
(
1995
);
G.
Palasantzas
and
G.
Backx
,
Phys. Rev. B
55
,
9371
(
1997
).
15.
G.
Palasantzas
,
Phys. Rev. B
48
,
14472
(
1993
);
G.
Palasantzas
,
Phys. Rev. B
49
,
5785
(E) (
1994
).
16.
S. K.
Sinha
,
E. B.
Sirota
,
S.
Garoff
, and
H. B.
Stanley
,
Phys. Rev. B
38
,
2297
(
1988
);
H.-N.
Yang
and
T.-M.
Lu
,
Phys. Rev. B
51
,
2479
(
1995
);
Y.-P.
Zhao
,
G.-C.
Wang
, and
T.-M.
Lu
,
Phys. Rev. B
55
,
13938
(
1997
);
G.
Palasantzas
and
J.
Krim
,
Phys. Rev. B
48
,
2873
(
1993
).
17.
G.
Palasantzas
,
Phys. Rev. E
49
,
1740
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.