Thermally stable Schottky contacts on n-type 4H–SiC with high Schottky barrier height were demonstrated by annealing the rare earth metal contacts (Ir and Ru) under O2 ambient. The formation of rare earth metal oxides (IrO2 and RuO2) after O2 annealing led to the increase of Schottky barrier height (>1.9 eV) and a low reverse leakage current (∼10−9A/cm2). Synchrotron radiation photoemission spectroscopy showed that the work function of IrO2 is higher about 0.23 eV than that of Ir and the binding energies of Si 2p and C 1s shifted toward lower binding energies by 0.12 eV in both O2 and N2 annealed samples. The oxidation annealing caused predominant Si outdiffusion to the IrO2(RuO2), leaving Si vacancies behind, leading to the shift of surface Fermi level to the energy level of Si vacancy. Both the formation of oxide and the Fermi level movement played a role in forming the Schottky contact with high barrier height and excellent thermally stability.

1.
B. J.
Baliga
,
Proc. IEEE
82
,
1112
(
1994
).
2.
B. J.
Baliga
,
IEEE Trans. Electron Devices
ED-43
,
1717
(
1996
).
3.
C. E.
Weitzel
,
J. W.
Palmour
,
C. H.
Carter
,
K.
Moore
,
K. J.
Nordquist
,
S.
Allen
,
C.
Thero
, and
M.
Bhatnagar
,
IEEE Trans. Electron Devices
ED-43
,
1732
(
1996
).
4.
R. J.
Trew
,
J.-B.
Yan
, and
P. M.
Mock
,
Proc. IEEE
79
,
598
(
1991
).
5.
W. J. Choyke, H. Matsunami, and G. Pensl, Silicon Carbide- A Review of Fundamental Questions and Applications to Current Device Technology, (Wiley, Berlin, 1997).
6.
P. G.
Neudeck
,
R. S.
Okojie
, and
L.-Y.
Chen
,
Proc. IEEE
90
,
1065
(
2002
).
7.
R. J.
Trew
,
Proc. IEEE
90
,
1032
(
2002
).
8.
R. C.
Clarke
and
J. W.
Palmour
,
Proc. IEEE
90
,
987
(
2002
).
9.
P. G. Neudeck, in The VLSI Handbook, SiC Technology, Chap. 6, edited by W.-K. Chen (Chemical Rubber Corp., Boca Raton, FL, 2000).
10.
K. E. Moore, RF Power Transistor from Wide Bandgap Materials (Chemical Rubber Corp., Boca Raton, FL, 2001), Chap. 7.2.6.
11.
L. M.
Porter
and
R. F.
Davis
,
Mater. Sci. Eng., B
34
,
83
(
1995
).
12.
V. Sazena and A. J. Steckl, Semiconductor and Semimetals, edited by Y. S. Park (Academic, San Diego, CA, 1998), Vol. 52, pp. 77–160.
13.
A.
Itoh
and
H.
Matsunami
,
Phys. Status Solidi A
162
,
389
(
1997
).
14.
C.
Raynaud
,
K.
Isoird
,
M.
Lazar
,
C. M.
Johnson
, and
N.
Wright
,
J. Appl. Phys.
91
,
9841
(
2002
).
15.
D. E.
Ioannou
,
N. A.
Papanicolaou
, and
P. E.
Nordquist
, Jr.
,
IEEE Trans. Electron Devices
ED-34
,
1694
(
1987
).
16.
N. A.
Papanicolaou
,
A.
Christou
, and
M. L.
Gipe
,
J. Appl. Phys.
65
,
3526
(
1989
).
17.
N.
Lundberg
,
M.
Ostling
,
C.-M.
Zetterling
,
P.
Tagstrom
, and
U.
Jansson
,
J. Electron. Mater.
29
,
372
(
2000
).
18.
Smithells, Metals Reference Book (Butterworths, London, 1976), pp. 186–188.
19.
G. Wilkinson, Comprehensive Co-ordination Chemistry (Pergamon, Oxford, 1987), Vol. 3, p. 279.
20.
T. B. Massalski, Binary Alloy Phase Diagrams (American Society for Metals, Metals Park, OH, 1987).
21.
L. F.
Mattheiss
,
Phys. Rev. B
13
,
2433
(
1976
).
22.
E.
Kolawa
,
F. C. T.
So
,
W.
Flick
,
X.-A.
Zhao
,
E. T.
Pan
, and
M.-A.
Nicolet
,
Thin Solid Films
173
,
217
(
1989
).
23.
L.
Krusin-Elbaum
and
M.
Wittmer
,
J. Electrochem. Soc.
135
,
2610
(
1997
).
24.
H.
Zhong
,
G.
Heuss
,
V.
Misra
,
H.
Luan
,
C.-H.
Lee
, and
D.-L.
Kwong
,
Appl. Phys. Lett.
78
,
1134
(
2001
).
25.
L. C.
Zhang
,
S. K.
Cheung
,
C. L.
Liang
, and
N. W.
Cheung
,
Appl. Phys. Lett.
50
,
445
(
1987
).
26.
L.
Krusin-Elbaum
and
M.
Wittmer
,
J. Electrochem. Soc.
135
,
2610
(
1988
).
27.
M. L.
Green
,
M. E.
Gross
,
L. E.
Papa
,
K. J.
Schnoes
, and
D.
Brasen
,
J. Electrochem. Soc.
132
,
2677
(
1985
).
28.
C. M.
Jeon
,
H. W.
Jang
, and
J.-L.
Lee
,
Appl. Phys. Lett.
82
,
391
(
2003
).
29.
E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts (Clarendon, Oxford, 1988), p. 38.
30.
S. M. Sze, Physics of Semiconductor Devices; 2nd ed. (Wiley, New York, 1981), pp. 279–297;
H. S.
Venugopalan
and
S. E.
Mohney
,
Appl. Phys. Lett.
73
,
1242
(
1998
).
31.
E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts (Clarendon, Oxford, 1988), pp. 42–43.
32.
A. M.
Goodman
,
J. Appl. Phys.
34
,
329
(
1963
).
33.
P.
Hacke
,
T.
Detchprohm
,
K.
Hiramatsu
, and
N.
Sawaki
,
Appl. Phys. Lett.
63
,
2676
(
1993
).
34.
H.
Werner
and
H. H.
Guttler
,
J. Appl. Phys.
69
,
1522
(
1991
).
35.
J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Perkin–Elmer, Eden Prairie, MN, 1992), p. 179.
36.
B. Ihsan, Thermochemical Data of Pure Substances (VCH, Berlin, 1987), p. 731.
37.
H.
Hochst
,
D. W.
Niles
,
G. W.
Zajac
,
T. H.
Fleisch
,
B. C.
Johnson
, and
J. M.
Meese
,
J. Vac. Sci. Technol. B
6
,
1320
(
1988
).
38.
W. Monch, Semiconductors Surfaces and Interfaces, 2nd ed. (Springer, Berlin, 1995).
39.
H. Luth, Surfaces and Interfaces of Solid Materials, 3rd ed. (Springer, Berlin, 1998).
40.
H. C.
Card
and
E. H.
Rhoderick
,
J. Phys. D
4
,
1589
(
1971
).
41.
B. R.
Pruniaux
and
A. C.
Adams
,
J. Appl. Phys.
43
,
1980
(
1972
).
42.
M.
Peckerar
,
J. Appl. Phys.
45
,
4652
(
1974
).
43.
L.
Wenchang
,
Z.
Kaiming
, and
X.
Xide
,
J. Phys. (France)
5
,
891
(
1993
).
44.
S. Y.
Han
,
K. H.
Kim
,
J. K.
Kim
,
H. W.
Jang
,
K. H.
Lee
,
N.-K.
Kim
,
E. D.
Kim
, and
J.-L.
Lee
,
Appl. Phys. Lett.
79
,
1816
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.