When the intermediate band solar cell (IBSC) absorbs sunlight, electrons are excited not only between the valence and conduction bands of the semiconductor material constituting the cell, but also between these bands and one or more additional bands that lie within the normally forbidden band gap of the material. Therefore, this device has the potential to reach high conversion efficiencies by increasing the photogenerated current (due to these multiple step excitations) without reducing the open-circuit voltage. In this article, a general method of describing the operation of the IBSC with N bands is presented for the cases where both the valence and conduction bands are unrestricted and restricted in their width. It is found that for the restricted IBSC, all of the intermediate bandwidths must be zero to satisfy the applied constraints. The efficiency for the unrestricted IBSC device under maximally concentrated black-body radiation with an infinite number of bands is estimated to be 85.0%. Under an air mass (AM) of 1.5 global radiation, an efficiency of 53.5% for the five-band IBSC is found to be the upper limit. Finally, the IBSC is found to be robust to changes in the AM.

1.
A.
Luque
and
A.
Martı́
,
Phys. Rev. Lett.
78
,
5014
(
1997
).
2.
A. Luque, A. Martı́, and L. Cuadra, Proceedings of the 16th European Photovoltaic Solar Energy Conference, 1–5 May, Glasgow, UK (2000), pp. 59–62.
3.
A. S.
Brown
,
M. A.
Green
, and
R. P.
Corkish
,
Physica E (Amsterdam)
14
,
121
(
2002
).
4.
L. Cuadra, A. Martı́, and A. Luque, Proceedings of the 16th European Photovoltaic Solar Energy Conference, 1–5 May, Glasgow, UK (2000), pp. 15–21.
5.
A.
Luque
and
A.
Martı́
,
Prog. Photovoltaics
9
,
73
(
2001
).
6.
A.
Martı́
,
L.
Cuadra
, and
A.
Luque
,
Proc. IEEE
,
940
(
2000
).
7.
R. P.
Raffaelle
,
S. L.
Castro
,
A. F.
Hepp
, and
S. G.
Bailey
,
Prog. Photovoltaics
10
,
433
(
2002
).
8.
A.
Martı́
,
L.
Cuadra
, and
A.
Luque
,
Physica E (Amsterdam)
14
,
150
(
2002
).
9.
A.
Martı́
,
L.
Cuadra
, and
A.
Luque
,
IEEE Trans. Electron Devices
49
,
1632
(
2002
).
10.
L.
Cuadra
,
A.
Martı́
, and
A.
Luque
,
Physica E (Amsterdam)
14
,
162
(
2002
).
11.
M. A.
Green
,
Prog. Photovoltaics
9
,
137
(
2001
).
12.
A. S.
Brown
and
M. A.
Green
,
J. Appl. Phys.
92
,
1329
(
2002
).
13.
W.
Shockley
and
H. J.
Queisser
,
J. Appl. Phys.
32
,
510
(
1961
).
14.
I.
Schnitzer
,
E.
Yablonovitch
,
C.
Caneau
, and
T. J.
Gmitter
,
Appl. Phys. Lett.
62
,
131
(
1993
).
15.
S. R. Wenham, M. A. Green, S. Edmiston, P. Campbell, L. Koschier, C. B. Honsberg, A. B. Sproul, D. Thorpe, Z. Shi, and G. Heiser, Proceedings of the First World Conference on Photovoltaic Energy Conversion, 5–9 December, Hawaii (1994), pp. 1234–1241.
16.
M. A.
Green
and
S. R.
Wenham
,
Appl. Phys. Lett.
65
,
2907
(
1994
).
17.
G. L.
Araújo
and
A.
Martı́
,
Sol. Energy Mater. Sol. Cells
33
,
213
(
1994
).
18.
P.
Würfel
,
J. Phys. C
15
,
3967
(
1982
).
19.
R.
Hulstrom
,
R.
Bird
, and
C.
Riordan
,
Sol. Cells
15
,
365
(
1985
).
20.
R. E.
Bird
and
C.
Riordan
,
J. Clim. Appl. Meteorol.
25
,
87
(
1986
).
21.
A. S. Brown and M. A. Green, Proceedings of the 17th European Photovoltaic Solar Energy Conference, 22–26 October, Munich (2001), pp. 246–249.
22.
A. S.
Brown
and
M. A.
Green
,
Prog. Photovoltaics
10
,
299
(
2002
).
23.
A.
De Vos
,
J. Phys. D
13
,
839
(
1980
).
24.
P.
Faine
,
S. R.
Kurtz
,
C.
Riordan
, and
J. M.
Olson
,
Sol. Cells
31
,
259
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.