Hugoniot equation-of-state data of shock compressed aluminum oxynitride (AlON), consisting of 64.1 mol% Al2O3⋅35.9 mol% AlN with a density of ∼3.68 g/cm3, have been determined to 180 GPa. The relationship between shock velocity (Us) and particle velocity (Up) is expressed by a straight line: Us(km/s)=8.08+0.761Up(km/s). Although there is no evidence of phase transition in the data, the determined Hugoniot of AlON has been compared with those of oxide spinels such as MgAl2O4 and Fe3O4. We discuss the systematics of high pressure phase transitions of spinels that indicate a phase transition to CaTi2O4-type phases. The phase transition to CaTi2O4-type structures implies that the recently discovered Si3N4 spinel also may be transformed into a CaTi2O4-type phase with increasing pressure.

1.
J. W.
McCauley
and
N. D.
Corbin
,
J. Am. Ceram. Soc.
61
,
476
(
1979
).
2.
N. D.
Corbin
,
J. Eur. Ceram. Soc.
5
,
143
(
1989
).
3.
J. W. McCauley, in Encyclopedia of Materials: Science and Technology (Elsevier, New York, 2001), pp. 127–132.
4.
E. K.
Graham
,
W. C.
Munly
,
J. W.
McCauley
, and
N. D.
Corbin
,
J. Am. Ceram. Soc.
71
,
807
(
1988
).
5.
J. U. Cazamias, P. S. Fiske, and S. J. Bless, in Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena, edited by K. P. Staudhammer, L. E. Murr, and M. A. Meyers (Elsevier, New York, 2001), pp. 181–188.
6.
A.
Zerr
,
G.
Miehe
,
G.
Serghiou
,
M.
Schwarz
,
E.
Kroke
,
R.
Riedel
,
H.
Fuess
,
P.
Kroll
, and
R.
Boehier
,
Nature (London)
400
,
340
(
1999
).
7.
T.
Sekine
,
H. L.
He
,
T.
Kobayashi
,
M.
Zhang
, and
F.
Xu
,
Appl. Phys. Lett.
76
,
3706
(
2000
).
8.
M.
Schwarz
,
G.
Miehe
,
A.
Zerr
,
E.
Kroke
,
B. T.
Poe
,
H.
Fuess
, and
R.
Riedel
,
Adv. Mater. (Weinheim, Ger.)
12
,
883
(
2000
).
9.
J. Z.
Jiang
,
K.
Stahl
,
R. W.
Berg
,
D. J.
Frost
,
T. J.
Zhou
, and
P. S.
Shi
,
Europhys. Lett.
51
,
62
(
2000
).
10.
K.
Leinenweber
,
M.
O’Keeffe
,
M.
Somayazulu
,
H.
Hubert
,
P. F.
McMillan
, and
G.
Wolf
,
Chem.-Eur. J.
5
,
3076
(
1999
).
11.
G.
Serghiou
,
G.
Miehe
,
O.
Tschauner
,
A.
Zerr
, and
R.
Boehler
,
J. Chem. Phys.
111
,
4659
(
1999
).
12.
H. L.
He
,
T.
Sekine
,
T.
Kobayashi
, and
K.
Kimoto
,
J. Appl. Phys.
90
,
4403
(
2001
).
13.
N.
Scotti
,
W.
Kockelmann
,
J.
Senker
,
S.
Trassel
, and
H.
Jacobs
,
Z. Anorg. Allg. Chem.
625
,
1435
(
1999
).
14.
M. P.
Shemkunas
,
G. H.
Wolf
,
K.
Keinenweber
, and
W. T.
Petuskey
,
J. Am. Ceram. Soc.
85
,
101
(
2002
).
15.
T.
Tatsumi
,
I.
Tanaka
,
H.
Adachi
,
F.
Oba
, and
T.
Sekine
,
J. Am. Ceram. Soc.
85
,
7
(
2002
).
16.
P.
Kroll
and
J.
von Appen
,
Phys. Status Solidi
226
,
R6
(
2001
).
17.
H. L.
He
,
T.
Sekine
,
T.
Kobayashi
,
H.
Hiroshaki
, and
I.
Suzuki
,
Phys. Rev. B
62
,
11412
(
2000
).
18.
N.
Funamori
,
R.
Jeanloz
,
J. N.
Nguyen
,
A.
Kavner
, and
W. A.
Caldwell
,
J. Geophys. Res.
103
,
20813
(
1998
).
19.
C.
Haavik
,
S.
Stolen
,
H.
Fjellvag
,
M.
Hanfland
, and
D.
Hausermann
,
Am. Mineral.
85
,
514
(
2000
).
20.
LASL Shock Hugoniot Data, edited by S. P. Marsh (University of California Press, Berkeley, 1980), pp. 260, 261, 301, 302, 345, and 346.
21.
T.
Sekine
and
T.
Kobayashi
,
Phys. Rev. B
55
,
8034
(
1997
).
22.
T.
Mashimo
,
K.
Tsukamoto
,
K.
Nakamura
,
Y.
Noguchi
,
K.
Fukuoka
, and
Y.
Syono
,
Geophys. Res. Lett.
27
,
2021
(
2000
).
23.
T.
Mashimo
,
M.
Uchino
,
A.
Nakamura
,
T.
Kobayashi
,
E.
Takazawa
,
T.
Sekine
,
Y.
Noguchi
,
H.
Hikosaka
,
K.
Fukuoka
, and
Y.
Syono
,
J. Appl. Phys.
86
,
6710
(
1999
).
24.
T.
Irifune
,
H.
Naka
,
T.
Sanehira
,
T.
Inoue
, and
K.
Funakoshi
,
Phys. Chem. Miner.
29
,
645
(
2002
).
25.
M.
Catti
,
Phys. Chem. Miner.
28
,
729
(
2001
).
26.
H.
Schafer
,
W. F.
Muller
, and
U.
Hornemann
,
Phys. Chem. Miner.
9
,
248
(
1983
).
This content is only available via PDF.
You do not currently have access to this content.