Electroless plated copper can be deposited on a TaN surface initiated by displacement plating when the surface oxide layer is removed by wet chemical etching. For application to ultra-large-scale integrated (ULSI) interconnection technology in which very thin TaN barrier films are used, it is essential to form a stable TaN film with minimal native oxide thickness. In this study, TaN films with various N/Ta atomic ratios were fabricated by reactive sputtering and native oxide growth on the surface was investigated by x-ray photoelectron spectroscopy, high resolution Rutherford backscattering spectrometry, and x-ray diffraction (XRD). It was found that when the N/Ta atomic ratio in the film was lower than 1.2, surface oxidation of the TaN film advanced with time. When the ratio was higher than 1.2, oxidation of the TaN film stopped at 1 ML. The XRD spectra indicated that when the N/Ta atomic ratio was between 0.82 and 1.25, face-centered-cubic TaN films were formed and the resistivity increased with an increase in the N/Ta ratio. Thus, a TaN film with a N/Ta ratio of 1.25 ratifies the minimal surface oxide thickness as well as low-resistivity requirements, and is appropriate for ULSI Cu interconnections using electroless Cu deposition.

1.
J. S. H.
Chao
,
H.
Kang
,
S. S.
Wong
, and
Y.
Shacham-Diamand
,
MRS Bull.
18
,
31
(
1993
).
2.
Y.
Shacham-Diamand
,
Electrochem. Solid-State Lett.
3
,
279
(
2000
).
3.
Z.
Wang
,
T.
Ida
,
H.
Sawa
,
H.
Sakaue
,
S.
Shingubara
, and
T.
Takahagi
,
Mater. Res. Soc. Symp. Proc.
ULSI-XVII
,
185
(
2002
).
4.
S. Shingubara, Z. Wang, T. Ida, H. Sakaue, and T. Takahagi, IEEE International Interconnect Conference 2002 (IITC, Piscataway, NJ, 2002), p. 176.
5.
Z.
Wang
,
T.
Ida
,
H.
Sakaue
,
S.
Shingubara
, and
T.
Takahagi
,
Electrochem. Solid-State Lett.
6
,
C38
(
2003
).
6.
International Technology Roadmap for Semiconductors (2001), http://public.itrs.net
7.
Z.
Wang
,
H.
Sakaue
,
S.
Shingubara
, and
Takayuki
Takahagi
,
Jpn. J. Appl. Phys.
42
,
1843
(
2003
).
8.
J. C.
Lin
,
G.
Chen
, and
C.
Lee
,
J. Electrochem. Soc.
146
,
1835
(
1999
).
9.
J. C.
Lin
and
C.
Lee
,
J. Electrochem. Soc.
147
,
713
(
2000
).
10.
W. H.
Lee
,
J. C.
Lin
, and
C.
Lee
,
Mater. Chem. Phys.
68
,
266
(
2001
).
11.
H. B.
Nie
,
S. Y.
Xu
,
S. J.
Wang
,
L. P.
You
,
Z.
Yang
,
C. K.
Ong
,
J.
Li
, and
T. Y. F.
Liew
,
Appl. Phys. A: Mater. Sci. Process.
A73
,
229
(
2001
).
12.
J. C.
Chuang
and
M. C.
Chen
,
J. Electrochem. Soc.
145
,
3170
(
1998
).
13.
G. S.
Chen
and
S. C.
Huang
,
J. Electrochem. Soc.
148
,
G424
(
2001
).
14.
W. H.
Lee
,
J. C.
Lin
, and
C.
Lee
,
Mater. Chem. Phys.
68
,
266
(
2001
).
15.
J. Chastain, in Handbook of X-ray Photoelectron Spectroscopy, edited by J. Chastain (Perkin-Elmer Eden, Prairie, MN, 1992), p. 170.
16.
S. I.
Raider
and
R.
Flitsh
,
IBM J. Res. Dev.
22
,
294
(
1978
).
This content is only available via PDF.
You do not currently have access to this content.